We describe the design of a potent and selective peptidomimetic inhibitor of geranylgeranyltransferase I (GGTI), GGTI-2418, and its methyl ester GGTI-2417, which increases the levels of the cyclin-dependent kinase (Cdk) inhibitor p27Kip1 and induces breast tumor regression in vivo. Experiments with p27Kip1 small interfering RNA in breast cancer cells and p27Kip1 null murine embryonic fibroblasts demonstrate that the ability of GGTI-2417 to induce cell death requires p27Kip1. GGTI-2417 inhibits the Cdk2-mediated phosphorylation of p27Kip1 at Thr187 and accumulates p27Kip1 in the nucleus. In nude mouse xenografts, GGTI-2418 suppresses the growth of human breast tumors. Furthermore, in ErbB2 transgenic mice, GGTI-2418 increases p27Kip1 and induces significant regression of breast tumors. We conclude that GGTIs' antitumor activity is, at least in part, due to inhibiting Cdk2-dependent p27Kip1 phosphorylation at Thr187 and accumulating nuclear p27Kip1. Thus, GGTI treatment might improve the poor prognosis of breast cancer patients with low nuclear p27Kip1 levels.
A series of compounds based on the carboxyl-terminal CAAL sequence of PGGTase-I substrates was designed and synthesized. Using piperazin-2-one as a semi-rigid scaffold, we have introduced critical pharmacophores in a well-defined arrangement to mimic the CAAL sequence. High potency and exceptional selectivity were obtained for inhibition of PGGTase-I with structures such as 45 and 70. Potency of this series of GGTIs was dependent on the presence of an L-leucine residue with a free carboxyl terminus, as well as an S configuration of the 3-aryl group. The selectivity was significantly enhanced by 5-methyl substitution on the imidazole ring and fluorine substitution on the 3-aryl group. Modification of the 6-position of the piperazinone scaffold was found to be unfavorable. Compounds 44 and 69, the corresponding methyl esters of 45 and 70, were found to selectively block processing of Rap1A by PGGTase-I in whole cells with IC(50) values of 0.4 microM and 0.7 microM respectively.
The observed rate of reaction in the dysprosium triflate catalyzed aza-Piancatelli rearrangement is controlled by a key off-cycle binding between aniline and catalyst. Deconvoluting the role of these ancillary species greatly broadens our understanding of factors affecting the productive catalytic pathway. We demonstrate that the rate of reaction is controlled by initial competitive binding between the furylcarbinol and nitrogen nucleophile using either a Brønsted or Lewis acid catalyst and that the resulting rearrangement proceeds without involving the Brønsted and Lewis acid catalyst. This shows conclusively that the rate-controlling step and selectivity of reaction are decoupled.
Continuing developments
in the elucidation techniques of complex catalytic processes is of
foremost importance to modern synthetic chemistry, and the identification
of efficient synthetic techniques relies on precise, reliable, and
adaptable methods to dissect the mechanism of a given transformation.
Currently, methods of reaction development are grounded upon the systematic
modification of specific variablessuch as temperature, time,
concentration, etc.to account for and control the dynamic
series of coupled equilibria within a catalytic environment. On the
other hand, tandem reaction analytical methods that involve the concomitant
use of different instruments to probe a reaction can provide time-resolved
information regarding active chemical species and facilitate the interrogation
and optimization of the system. Herein, we report our study applying
tandem in situ ReactIR and HPLC-MS monitoring to the dysprosium(III)
triflate-catalyzed aza-Piancatelli rearrangement of 2-furylcarbinols,
a reaction that grants access to trans-4,5-disubstituted
cyclopentenonescommon motifs in important biologically relevant
and natural compounds. With a prototype automated sampling apparatus,
information was obtained about the intrinsic chemoselectivity of the
reaction, and previously unseen intermediates were observed, allowing
for a more detailed reaction mechanism to be substantiated. The advantages
of applying this type of tandem measurement to study these types of
systems are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.