Biodiesel production from microalgae is being widely developed at different scales as a potential source of renewable energy with both economic and environmental benefits. Although many microalgae species have been identified and isolated for lipid production, there is currently no consensus as to which species provide the highest productivity. Different species are expected to function best at different aquatic, geographical and climatic conditions. In addition, other value-added products are now being considered for commercial production which necessitates the selection of the most capable algae strains suitable for multiple-product algae biorefineries. Here we present and review practical issues of several simple and robust methods for microalgae isolation and selection for traits that maybe most relevant for commercial biodiesel production. A combination of conventional and modern techniques is likely to be the most efficient route from isolation to large-scale cultivation.
Microalgal biomass can be used for biodiesel, feed, and food production. Collection and identification of local microalgal strains in the Northern Territory, Australia was conducted to identify strains with high protein and lipid contents as potential feedstock for animal feed and biodiesel production, respectively. A total of 36 strains were isolated from 13 samples collected from a variety of freshwater locations, such as dams, ponds, and streams and subsequently classified by 18S rDNA sequencing. All of the strains were green microalgae and predominantly belong to Chlorella sp., Scenedesmus sp., Desmodesmus sp., Chlamydomonas sp., Pseudomuriella sp., Tetraedron caudatum, Graesiella emersonii, and Mychonastes timauensis. Among the fastest growing strains, Scenedesmus sp. NT1d possessed the highest content of protein; reaching up to 33% of its dry weight. In terms of lipid production, Chlorella sp. NT8a and Scenedesmus dimorphus NT8e produced the highest triglyceride contents of 116.9 and 99.13 μg mL−1 culture, respectively, as measured by gas chromatography–mass spectroscopy of fatty acid methyl esters. These strains may present suitable candidates for biodiesel production after further optimization of culturing conditions, while their protein-rich biomass could be used for animal feed.
Background: The lack of sequenced genomes for oleaginous microalgae limits our understanding of the mechanisms these organisms utilize to become enriched in triglycerides. Here we report the de novo transcriptome assembly and quantitative gene expression analysis of the oleaginous microalga Neochloris oleoabundans, with a focus on the complex interaction of pathways associated with the production of the triacylglycerol (TAG) biofuel precursor. Results: After growth under nitrogen replete and nitrogen limiting conditions, we quantified the cellular content of major biomolecules including total lipids, triacylglycerides, starch, protein, and chlorophyll. Transcribed genes were sequenced, the transcriptome was assembled de novo, and the expression of major functional categories, relevant pathways, and important genes was quantified through the mapping of reads to the transcriptome. Over 87 million, 77 base pair high quality reads were produced on the Illumina HiSeq sequencing platform. Metabolite measurements supported by genes and pathway expression results indicated that under the nitrogen-limiting condition, carbon is partitioned toward triglyceride production, which increased fivefold over the nitrogen-replete control. In addition to the observed overexpression of the fatty acid synthesis pathway, TAG production during nitrogen limitation was bolstered by repression of the β-oxidation pathway, up-regulation of genes encoding for the pyruvate dehydrogenase complex which funnels acetyl-CoA to lipid biosynthesis, activation of the pentose phosphate pathway to supply reducing equivalents to inorganic nitrogen assimilation and fatty acid biosynthesis, and the up-regulation of lipases-presumably to reconstruct cell membranes in order to supply additional fatty acids for TAG biosynthesis. Conclusions: Our quantitative transcriptome study reveals a broad overview of how nitrogen stress results in excess TAG production in N. oleoabundans, and provides a variety of genetic engineering targets and strategies for focused efforts to improve the production rate and cellular content of biofuel precursors in oleaginous microalgae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.