anthomonas oryzae pv. oryzae (Xoo) is the etiological agent of bacterial blight disease in rice. The disease is most severe in southeast Asia but is increasingly damaging in west African countries, and results in substantial yield loss 1. TALes from Xoo are injected by a type III secretion system into plant cells and recognize effector-binding elements (EBEs) in cognate SWEET host gene promoters, which results in induction of SWEET genes and production of sugars that enable disease susceptibility in rice 2,3. An array of central repeats, which are 34-35 amino acids long, are present in each TALe and interact with EBEs via two repeat variable di-residues (RVDs) at the 12th and 13th position of each repeat 4,5. Aberrant repeats, longer than 35 amino acids, are hypothesized to allow looping out of the repeat to accommodate alternate sequence binding for a particular TALe 6. Bacterial blight depends on TALe-mediated induction of at least one member of a family of sugar-transporter genes. Although rice has more than 20 SWEET genes, only those of clade III are reported to be induced by Xoo 7-10. Although all five of the known clade III SWEET genes in rice can function as susceptibility genes for bacterial blight, only three are known to be targeted in nature 10. More specifically, SWEET11 expression is induced by strains encoding the TALe PthXo1, SWEET13 by PthXo2 and SWEET14 by any one of several TALes, namely AvrXa7, PthXo3, TalC and TalF (originally Tal5) 7,9-15 (Table 1). Effectors of Xoo that target clade III SWEET genes are referred to as major TALes owing to their strong virulence effect. Naturally occurring resistance has arisen as the result of nucleotide polymorphisms in EBEs of SWEET promoters. EBE alleles of SWEET11 that are not recognized by PthXo1 are collectively referred to as the recessive resistance gene xa13. Rice varieties containing xa13 are resistant to strains that solely depend on PthXo1 for SWEET induction. Most indica rice varieties carry a SWEET13 allele that contains four adenines in the EBE for PthXo2, and rice lines carrying this allele are susceptible to PthXo2-dependent strains 12. A rare exception is the recessive resistance allele xa25, which contains three adenines in the EBE for SWEET13 in the indica cultivar Minghui 63, conferring resistance to strains that depend solely on PthXo2 16. A similar recessive resistance allele in japonica rice varieties is equally effective against strains relying on PthXo2 (ref. 12). Additional naturally occurring recessive EBE polymorphisms that confer resistance to strains carrying PthXo2, and the overlapping EBEs for PthXo3, TalF and AvrXa7 have subsequently been identified in the promoters of SWEET13 and SWEET14, respectively, in germplasm collections 17,18. Rice susceptibility genes are good targets for genome editing for disease resistance. TALe-mediated susceptibility is particularly modifiable. For instance, transcription-activator-like effector nuclease (TALEN)-directed mutations in SWEET14 created lines resistant to strains carrying PthXo3/Avr...
Plants maintain microbial associations whose functions remain largely unknown. For the past 15 y, we have planted the annual postfire tobacco Nicotiana attenuata into an experimental field plot in the plant’s native habitat, and for the last 8 y the number of plants dying from a sudden wilt disease has increased, leading to crop failure. Inadvertently we had recapitulated the common agricultural dilemma of pathogen buildup associated with continuous cropping for this native plant. Plants suffered sudden tissue collapse and black roots, symptoms similar to a Fusarium–Alternaria disease complex, recently characterized in a nearby native population and developed into an in vitro pathosystem for N. attenuata. With this in vitro disease system, different protection strategies (fungicide and inoculations with native root-associated bacterial and fungal isolates), together with a biochar soil amendment, were tested further in the field. A field trial with more than 900 plants in two field plots revealed that inoculation with a mixture of native bacterial isolates significantly reduced disease incidence and mortality in the infected field plot without influencing growth, herbivore resistance, or 32 defense and signaling metabolites known to mediate resistance against native herbivores. Tests in a subsequent year revealed that a core consortium of five bacteria was essential for disease reduction. This consortium, but not individual members of the root-associated bacteria community which this plant normally recruits during germination from native seed banks, provides enduring resistance against fungal diseases, demonstrating that native plants develop opportunistic mutualisms with prokaryotes that solve context-dependent ecological problems.
Blight-resistant rice lines are the most effective solution for bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo). Key resistance mechanisms involve SWEET genes as susceptibility factors. Bacterial transcription activator-like (TAL) effectors bind to effector-binding elements (EBEs) in SWEET gene promoters and induce SWEET genes. EBE variants that cannot be recognized by TAL effectors abrogate induction, causing resistance. Here we describe a diagnostic kit to enable analysis of bacterial blight in the field and identification of suitable resistant lines. Specifically, we include a SWEET promoter database, RT-PCR primers for detecting SWEET induction, engineered reporter rice lines to visualize SWEET protein accumulation and knockout rice lines to identify virulence mechanisms in bacterial isolates. We also developed CRISPR-Cas9 genome-edited Kitaake rice to evaluate the efficacy of EBE mutations in resistance, software to predict the optimal resistance gene set for a specific geographic region, and two resistant 'mega' rice lines that will empower farmers to plant lines that are most likely to resist rice blight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.