An important step ensuring the fidelity in protein biosynthesis is the aminoacylation of tRNAs by aminoacyl-tRNA synthetases. The accuracy of this process rests on a family of 20 enzymes, one for each amino acid. One exception is the formation of Gln-tRNA(Gln) that can be accomplished by two different pathways: aminoacylation of tRNA(Gln) with Gln by glutaminyl-tRNA synthetase (GlnRS; EC 6.1.1.18) or transamidation of Glu from Glu-tRNA(Gln) mischarged by glutamyl-tRNA synthetase (GluRS; EC 6.1.1.17). The latter pathway is widespread among bacteria and organelles that, accordingly, lack GlnRS. However, some bacterial species, such as Escherichia coli, do possess a GlnRS activity, which is responsible for Gln-tRNA(Gln) formation. In the cytoplasm of eukaryotic cells, both GluRS and GlnRS activities can be detected. To gain more insight into the evolutionary relationship between GluRS and GlnRS enzyme species, we have now isolated and characterized a human cDNA encoding GlnRS. The deduced amino acid sequence shows a strong similarity with other known GlnRSs and with eukaryotic GluRSs. A molecular phylogenetic analysis was conducted on the 14 GlxRS (GluRS or GlnRS) sequences available to date. Our data suggest that bacterial GlnRS has a eukaryotic origin and was acquired by a mechanism of horizontal gene transfer.
The gene coding for human anti-Müllerian hormone (AMH) was localized to subbands p13.2→p13.3 on chromosome 19, using in situ hybridization and Southern blot analysis of a panel of man-mouse and man-hamster somatic cell hybrids.
The Gli proteins are critical components of multiple processes in development, homeostasis and disease, including neurogenesis and tumorigenesis. However, it is unclear how the Gli code, the sum of their combinatorial positive and negative functions, dictates cell fate and behavior. Using an antisense approach to knockdown gene function in vivo, we find that each of the three Gli proteins is required for the induction of all primary neurons in the amphibian neural plate and regulates the bHLH/Notch neurogenic cascade. Analyses of endogenous Gli function in Gli-mediated neurogenesis and tumorigenesis, and in animal cap assays, reveal specific requirements that are context specific. Nuclear colocalization and binding studies suggest the formation of complexes, with the first two zinc fingers of the Gli five zinc-finger domain acting as a protein-protein interaction site. The Gli proteins therefore appear to form a dynamic physical network that underlies cooperative function, greatly extending the combinatorial possibilities of the Gli code, which may be further fine-tuned in cell fate specification by co-factor function
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.