Traffic speed forecasting in the short term is one of the most critical parts of any intelligent transportation system (ITS). Accurate speed forecasting can support travelers’ route choices, traffic guidance, and traffic control. This study proposes a deep learning approach using long short-term memory (LSTM) network with tuning hyper-parameters to forecast short-term traffic speed on an arterial parallel multi-lane road in a developing country such as Vietnam. The challenge of mishandling the location data of vehicles on small and adjacent multi-lane roads will be addressed in this study. To test the accuracy of the proposed forecasting model, its application is illustrated using historical voyage GPS-monitored data on the Le Hong Phong urban arterial road in Haiphong city of Vietnam. The results indicate that in comparison with other models (e.g., traditional models and convolutional neural network), the best performance in terms of root mean square error (RMSE), mean absolute error (MAE), and median absolute error (MDAE) is obtained by using the proposed model.
Abstract-Maintaining the balance between convergence and diversity plays a vital role in multi-objective evolutionary algorithms (MOEAs). However, most MOEAs cannot reach a satisfying balance, especially when solving problems having complicated pareto optimal sets. In this paper, we present a modified cooperative co-evolution approach for achieving better convergence and diversity simultaneously (namely DPP2). In DPP2, while populations are trying to achieve both criteria, the priority being set for these criteria will be different. One population focuses on achieving better convergence (by using pareto-based ranking scheme), while the other is for ensuring the population diversity (by using the decomposition-based method). After that, we use a cooperation mechanism to integrate the two populations and create a new combined population with hopes of having both characteristics (i.e. converged and diverse). Performance of DPP2 is examined on the well-known benchmarks of multiobjective optimization problems (MOPs) using the hypervolume (HV), the generational distance (GD), the inverted generational distance (IGD) metrics. In comparison with the original version DPP algorithm, experimental results indicated that DPP2 can significantly outperform DPP on the benchmark problems with stable results.
Broadleaf deciduous forests (BDFs) or dry dipterocarp forests play an important role in biodiversity conservation in tropical regions. Observations and classification of forest phenology provide valuable inputs for ecosystem models regarding its responses to climate change to assist forest management. Remotely sensed observations are often used to derive the parameters corresponding to seasonal vegetation dynamics. Data acquired from the Sentinel-1A satellite holds a great potential to improve forest type classification at a medium-large scale. This article presents an integrated object-based classification method by using Sentinel-1A and Landsat 8 OLI data acquired during different phenological periods (rainy and dry seasons). The deciduous forest and nondeciduous forest areas are classified by using NDVI (normalized difference vegetation index) from Landsat 8 cloud-free composite images taken during dry (from February to April) and rainy (from June to October) seasons. Shorea siamensis (S. siamensis), Shorea obtusa (S. obtusa), and Dipterocarpus tuberculatus (D. tuberculatus) in the deciduous forest area are classified based on the correlation between phenology of BDFs in Yok Don National Park and backscatter values of time-series Sentinel-1A imagery in deciduous forest areas. One hundred and five plots were selected during the field survey in the study area, consisting of dominant deciduous species, tree height, and canopy diameter. Thirty-nine plots were used for training to decide the broadleaf deciduous forest areas of the classified BDFs by the proposed method, and the other sixty-six plots were used for validation. Our proposed approach used the changes of backscatter in multitemporal SAR images to implement BDF classification mapping with acceptable accuracy. The overall accuracy of classification is about 79%, with a kappa coefficient of 0.7. Accurate classification and mapping of the BDFs using the proposed method can help authorities implement forest management in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.