BackgroundTo study the reliability and validity of high-resolution peripheral quantitative CT (HR-pQCT) with microCT (μCT) as gold standard in the visual detection of cortical breaks in metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints.MethodsTen cadaveric fingers (10 MCP and 9 PIP joints) were imaged by HR-pQCT and μCT and visually analyzed by two independent readers. Intra- and interreader reliability were evaluated for the presence (yes/no, kappa statistics) and the total number (intraclass correlation coefficient, ICC) of cortical breaks. Sensitivity, specificity, positive and negative predictive value (PPV respectively NPV) of HR-pQCT in detecting cortical breaks were calculated.ResultsWith HR-pQCT, mean 149 cortical breaks were identified and with μCT mean 129 (p < 0.05). Intrareader reliability for the presence of a cortical break per quadrant was 0.52 (95 % CI 0.48–0.56) and 0.71 (95 % CI 0.67–0.75) for HR-pQCT and μCT, respectively, and for the total number of cortical breaks 0.61 (95 % CI 0.49–0.70) and 0.75 (95 % CI 0.68–0.82). Interreader reliability for the presence of a cortical break per quadrant was 0.37 (95 % CI 0.33–0.41) and 0.45 (95 % CI 0.41–0.49) for HR-pQCT and μCT, respectively, and for the number of cortical breaks 0.55 (95 % CI 0.43–0.65) and 0.54 (95 % CI 0.35–0.67). Sensitivity, specificity, PPV and NPV of HR-pQCT were 81.6, 64.0, 81.6, and 64 % respectively.ConclusionCortical breaks were commonly visualized in MCP and PIP joints with HR-pQCT and μCT. Reliability of both HR-pQCT and μCT was fair to moderate. HR-pQCT was highly sensitive to detect cortical breaks with μCT as gold standard.Electronic supplementary materialThe online version of this article (doi:10.1186/s12891-016-1148-y) contains supplementary material, which is available to authorized users.
We evaluated whether cortical interruptions classified as vascular channel (VC) on high-resolution peripheral quantitative computed tomography (HR-pQCT) could be confirmed by histology. We subsequently evaluated the image characteristics of histologically identified VCs on matched single and multiplane HR-pQCT images. Four 3-mm thick portions in three anatomic metacarpophalangeal joint specimens were selected for histologic sectioning. First, VCs identified with HR-pQCT were examined for confirmation on histology. Second and independently, VCs identified by histology were matched to single and multiplane HR-pQCT images to assess for presence of cortical interruptions. Only one out of five cortical interruptions suggestive for VC on HR-pQCT could be confirmed on histology. In contrast, 52 VCs were identified by histology of which 39 (75%) could be classified as cortical interruption or periosteal excavation on matched single HR-pQCT slices. On multiplane HR-pQCT images, 11 (21%) showed a cortical interruption in at least two consecutive slices in two planes, 36 (69%) in at least one slice in two planes and five (10%) showed no cortical interruption. Substantially more VCs were present in histology sections than initially suggested by HR-pQCT. The small size and heterogeneous presentation, limit the identification as VC on HR-pQCT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.