In social influence analysis, viral marketing, and other fields, the influence maximization problem is a fundamental one with critical applications and has attracted many researchers in the last decades. This problem asks to find a k-size seed set with the largest expected influence spread size. Our paper studies the problem of fairness budget distribution in influence maximization, aiming to find a seed set of size k fairly disseminated in target communities. Each community has certain lower and upper bounded budgets, and the number of each community’s elements is selected into a seed set holding these bounds. Nevertheless, resolving this problem encounters two main challenges: strongly influential seed sets might not adhere to the fairness constraint, and it is an NP-hard problem. To address these shortcomings, we propose three algorithms (FBIM1, FBIM2, and FBIM3). These algorithms combine an improved greedy strategy for selecting seeds to ensure maximum coverage with the fairness constraints by generating sampling through a Reverse Influence Sampling framework. Our algorithms provide a (1/2−ϵ)-approximation of the optimal solution, and require OkTlog(8+2ϵ)nln2δ+ln(kn)ϵ2, OkTlognϵ2k, and OTϵlogkϵlognϵ2k complexity, respectively. We conducted experiments on real social networks. The result shows that our proposed algorithms are highly scalable while satisfying theoretical assurances, and that the coverage ratios with respect to the target communities are larger than those of the state-of-the-art alternatives; there are even cases in which our algorithms reaches 100% coverage with respect to target communities. In addition, our algorithms are feasible and effective even in cases involving big data; in particular, the results of the algorithms guarantee fairness constraints.
Network alignment, which is also known as user identity linkage, is a kind of network analysis task that predicts overlapping users between two different social networks. This research direction has attracted much attention from the research community, and it is considered to be one of the most important research directions in the field of social network analysis. There are many different models for finding users that overlap between two networks, but most of these models use separate and different techniques to solve prediction problems, with very little work that has combined them. In this paper, we propose a method that combines different embedding techniques to solve the network alignment problem. Each association network alignment technique has its advantages and disadvantages, so combining them together will take full advantage and can overcome those disadvantages. Our model combines three-level embedding techniques of text-based user attributes, a graph attention network, a graph-drawing embedding technique, and fuzzy c-mean clustering to embed each piece of network information into a low-dimensional representation. We then project them into a common space by using canonical correlation analysis and compute the similarity matrix between them to make predictions. We tested our network alignment model on two real-life datasets, and the experimental results showed that our method can considerably improve the accuracy by about 10–15% compared to the baseline models. In addition, when experimenting with different ratios of training data, our proposed model could also handle the over-fitting problem effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.