The circadian glucocorticoid-Krüppel-like factor 15-branched-chain amino acid (GC-KLF15-BCAA) signaling pathway is a key regulatory axis in muscle, whose imbalance has wide-reaching effects on metabolic homeostasis. Spinal muscular atrophy (SMA) is a neuromuscular disorder also characterized by intrinsic muscle pathologies, metabolic abnormalities and disrupted sleep patterns, which can influence or be influenced by circadian regulatory networks that control behavioral and metabolic rhythms. We therefore set out to investigate the contribution of the GC-KLF15-BCAA pathway in SMA pathophysiology of Taiwanese Smn−/−;SMN2 and Smn2B/− mouse models. We thus uncover substantial dysregulation of GC-KLF15-BCAA diurnal rhythmicity in serum, skeletal muscle and metabolic tissues of SMA mice. Importantly, modulating the components of the GC-KLF15-BCAA pathway via pharmacological (prednisolone), genetic (muscle-specific Klf15 overexpression) and dietary (BCAA supplementation) interventions significantly improves disease phenotypes in SMA mice. Our study highlights the GC-KLF15-BCAA pathway as a contributor to SMA pathogenesis and provides several treatment avenues to alleviate peripheral manifestations of the disease. The therapeutic potential of targeting metabolic perturbations by diet and commercially available drugs could have a broader implementation across other neuromuscular and metabolic disorders characterized by altered GC-KLF15-BCAA signaling.
Duchenne muscular dystrophy (DMD) is a genetic muscle disorder caused by mutations in the Dmd gene resulting in the loss of the protein dystrophin. Patients do not only experience skeletal muscle degeneration, but also develop severe cardiomyopathy by their second decade, one of the main causes of death. The absence of dystrophin in the heart renders cardiomyocytes more sensitive to stretch-induced damage. Moreover, it pathologically alters intracellular calcium (Ca 2+ ) concentration, neuronal nitric oxide synthase (nNOS) localization and mitochondrial function and leads to inflammation and necrosis, all contributing to the development of cardiomyopathy. Current therapies only treat symptoms and therefore the need for targeting the genetic defect is immense. Several preclinical therapies are undergoing development, including utrophin up-regulation, stop codon read-through therapy, viral gene therapy, cell-based therapy and exon skipping. Some of these therapies are undergoing clinical trials, but these have predominantly focused on skeletal muscle correction. However, improving skeletal muscle function without addressing cardiac aspects of the disease may aggravate cardiomyopathy and therefore it is essential that preclinical and clinical focus include improving heart function. This review consolidates what is known regarding molecular pathology of the DMD heart, specifically focusing on intracellular Ca 2+ , nNOS and mitochondrial dysregulation. It briefly discusses the current treatment options and then elaborates on the preclinical therapeutic approaches currently under development to restore dystrophin thereby improving pathology, with a focus on the heart.
Background Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disorder caused by genetic loss of dystrophin protein. Extracellular microRNAs (ex-miRNAs) are putative, minimally invasive biomarkers of DMD. Specific ex-miRNAs (e.g. miR-1, miR-133a, miR-206, and miR-483) are highly up-regulated in the serum of DMD patients and dystrophic animal models and are restored to wild-type levels following exon skipping-mediated dystrophin rescue in mdx mice. As such, ex-miRNAs are promising pharmacodynamic biomarkers of exon skipping efficacy. Here, we aimed to determine the degree to which ex-miRNA levels reflect the underlying level of dystrophin protein expression in dystrophic muscle. Methods Candidate ex-miRNA biomarker levels were investigated in mdx mice in which dystrophin was restored with peptide-PMO (PPMO) exon skipping conjugates and in mdx-Xist Δhs mice that express variable amounts of dystrophin from birth as a consequence of skewed X-chromosome inactivation. miRNA profiling was performed in mdx-Xist Δhs mice using the FirePlex methodology and key results validated by small RNA TaqMan RT-qPCR. The muscles from each animal model were further characterized by dystrophin western blot and immunofluorescence staining. Results The restoration of ex-myomiR abundance observed following PPMO treatment was not recapitulated in the high dystrophin-expressing mdx-Xist Δhs group, despite these animals expressing similar amounts of total dystrophin protein (~37% of wild-type levels). Instead, ex-miRNAs were present at high levels in mdx-Xist Δhs mice regardless of dystrophin expression. PPMO-treated muscles exhibited a uniform pattern of dystrophin localization and were devoid of regenerating fibres, whereas mdx-Xist Δhs muscles showed non-homogeneous dystrophin staining and sporadic regenerating foci. Conclusions Uniform dystrophin expression is required to prevent ex-miRNA release, stabilize myofiber turnover, and attenuate pathology in dystrophic muscle.
The absence of the dystrophin protein in Duchenne muscular dystrophy (DMD) results in myofiber fragility and a plethora of downstream secondary pathologies. While a variety of experimental therapies are in development, achieving effective treatments for DMD remains exceptionally challenging, not least because the pathological consequences of dystrophin loss are incompletely understood. Here we have performed proteome profiling in tibialis anterior muscles from two murine DMD models (mdx and mdx52) at three ages (8, 16, and 80 weeks of age), all n=3. High-resolution isoelectric focusing liquid chromatography-tandem mass spectrometry (HiRIEF-LC-MS/MS) was used to quantify the expression of 4,974 proteins across all 27 samples. The two dystrophic models were found to be highly similar, whereas multiple proteins were differentially expressed relative to wild-type (C57BL/6) controls at each age. Furthermore, 1,795 proteins were differentially expressed when samples were pooled across ages and dystrophic strains. These included numerous proteins associated with the extracellular matrix and muscle function which have not been reported previously. Pathway analysis revealed multiple perturbed pathways and predicted upstream regulators which together are indicative of crosstalk between inflammatory, metabolic, and muscle growth pathways (e.g. TNF, INFγ, NF-κB, SIRT1, AMPK, PGC-1α, PPARs, ILK, and AKT/PI3K). Up-regulation of CAV3, MVP and PAK1 protein expression was validated in dystrophic muscle by Western blot. Furthermore, MVP was up-regulated during, but not required for, the differentiation of C2C12 myoblasts suggesting that this protein may affect muscle regeneration. This study provides novel insights into mutation-independent proteomic signatures characteristic of the dystrophic phenotype and its progression with aging.
Physiology and behaviour are critically dependent on circadian regulation via a core set of clock genes, dysregulation of which leads to metabolic and sleep disturbances. Metabolic and sleep perturbations occur in spinal muscular atrophy (SMA), a neuromuscular disorder caused by loss of the survival motor neuron (SMN) protein and characterized by motor neuron loss and muscle atrophy. We therefore investigated the expression of circadian rhythm genes in various metabolic tissues and spinal cord of the Taiwanese Smn−/−;SMN2 SMA animal model. We demonstrate a dysregulated expression of the core clock genes (clock, ARNTL/Bmal1, Cry1/2, Per1/2) and clock output genes (Nr1d1 and Dbp) in SMA tissues during disease progression. We also uncover an age- and tissue-dependent diurnal expression of the Smn gene. Importantly, we observe molecular and phenotypic corrections in SMA mice following direct light modulation. Our study identifies a key relationship between an SMA pathology and peripheral core clock gene dysregulation, highlights the influence of SMN on peripheral circadian regulation and metabolism and has significant implications for the development of peripheral therapeutic approaches and clinical care management of SMA patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.