Snakebite with hemotoxic venom continues to be a major source of morbidity and mortality worldwide. Our laboratory has characterized the coagulopathy that occurs in vitro in human plasma via specialized thrombelastographic methods to determine if venoms are predominantly anticoagulant or procoagulant in nature. Further, the exposure of venoms to carbon monoxide (CO) or O-phenylhydroxylamine (PHA) modulate putative heme groups attached to key enzymes has also provided mechanistic insight into the multiple different activities contained in one venom. The present investigation used these techniques to characterize fourteen different venoms obtained from snakes from North, Central, and South America. Further, we review and present previous thrombelastographic-based analyses of eighteen other species from the Americas. Venoms were found to be anticoagulant and procoagulant (thrombin-like activity, thrombin-generating activity). All prospectively assessed venom activities were determined to be heme-modulated except two, wherein both CO and its carrier molecule were found to inhibit activity, while PHA did not affect activity (Bothriechis schlegelii and Crotalus organus abyssus). When divided by continent, North and Central America contained venoms with mostly anticoagulant activities, several thrombin-like activities, with only two thrombin-generating activity containing venoms. In contrast, most venoms with thrombin-generating activity were located in South America, derived from Bothrops species. In conclusion, the kinetomic profiles of venoms obtained from thirty-two Pan-American Pit Viper species are presented. It is anticipated that this approach will be utilized to identify clinically relevant hemotoxic venom enzymatic activity and assess the efficacy of locally delivered CO or systemically administered antivenoms.
Venomous snake bite and subsequent coagulopathy is a significant source of morbidity and mortality worldwide. The gold standard to treat coagulopathy caused by these venoms is the administration of antivenom; however, despite this therapy, coagulopathy still occurs and recurs. Of interest, our laboratory has demonstrated in vitro and in vivo that coagulopathy-inducing venom exposed to carbon monoxide (CO) is inhibited, potentially by an attached heme. The present investigation sought to determine if venoms derived from snakes of the African genera Atheris, Atractaspis, Causus, Cerastes, Echis, and Macrovipera that have no or limited antivenoms available could be inhibited with CO or with the metheme-inducing agent, O-phenylhydroxylamine (PHA). Assessing changes in coagulation kinetics of human plasma with thrombelastography, venoms were exposed in isolation to CO or PHA. Eight species were found to have procoagulant activity consistent with the generation of human thrombin, while one was likely fibrinogenolytic. All venoms were significantly inhibited by CO/PHA with species-specific variation noted. These data demonstrate indirectly that the heme is likely bound to these disparate venoms as an intermediary modulatory molecule. In conclusion, future investigation is warranted to determine if heme could serve as a potential therapeutic target to be modulated during treatment of envenomation by hemotoxic enzymes.
Hypofibrinogenemia is an important clinical consequence following envenomation by Lachesis muta muta, usually attenuated or prevented by administration of antivenom. The venom of L. m. muta contains both a metalloproteinase fibrinogenase and a serine protease thrombin-like enzyme, and exposure of fibrinogen to iron (Fe) and carbon monoxide (CO) has been demonstrated to decrease its catalysis by such enzymes. Using thrombelastographic analytical techniques, it was determined that this venom displayed weak procoagulant effects combined with fibrinogenolytic effects, and pretreatment of plasma with Fe and CO markedly attenuated venom-mediated effects. Additional experiments involving heparin exposure and varying calcium concentrations demonstrated that modification of fibrinogen with Fe and CO in human plasma rendered fibrinogen not recognizable to the fibrinogenolytic metalloproteinase but did not prevent polymerization by the thrombin-like serine protease. Lastly, when venom was exposed to CO in isolation and then placed in plasma, the fibrinogenase was inhibited but the thrombin-like enzyme was not inhibited. In sum, utilizing relatively facile modifications, we demonstrated with thrombelastography that Fe and/or CO addition can protect human plasmatic coagulation from fibrinogenase activity but not the effects of the thrombin-like activity of L. m. muta venom.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.