The phorbol ester phorbol 12-myristate 13-acetate (PMA) inhibits Cl(-) secretion (short-circuit current, I(sc)) and decreases barrier function (transepithelial resistance, TER) in T84 epithelia. To elucidate the role of specific protein kinase C (PKC) isoenzymes in this response, we compared PMA with two non-phorbol activators of PKC (bryostatin-1 and carbachol) and utilized three PKC inhibitors (Gö-6850, Gö-6976, and rottlerin) with different isozyme selectivity profiles. PMA sequentially inhibited cAMP-stimulated I(sc) and decreased TER, as measured by voltage-current clamp. By subcellular fractionation and Western blot, PMA (100 nM) induced sequential membrane translocation of the novel PKC epsilon followed by the conventional PKC alpha and activated both isozymes by in vitro kinase assay. PKC delta was activated by PMA but did not translocate. By immunofluorescence, PKC epsilon redistributed to the basolateral domain in response to PMA, whereas PKC alpha moved apically. Inhibition of I(sc) by PMA was prevented by the conventional and novel PKC inhibitor Gö-6850 (5 microM) but not the conventional isoform inhibitor Gö-6976 (5 microM) or the PKC delta inhibitor rottlerin (10 microM), implicating PKC epsilon in inhibition of Cl(-) secretion. In contrast, both Gö-6976 and Gö-6850 prevented the decline of TER, suggesting involvement of PKC alpha. Bryostatin-1 (100 nM) translocated PKC epsilon and PKC alpha and inhibited cAMP-elicited I(sc). However, unlike PMA, bryostatin-1 downregulated PKC alpha protein, and the decrease in TER was only transient. Carbachol (100 microM) translocated only PKC epsilon and inhibited I(sc) with no effect on TER. Gö-6850 but not Gö-6976 or rottlerin blocked bryostatin-1 and carbachol inhibition of I(sc). We conclude that basolateral translocation of PKC epsilon inhibits Cl(-) secretion, while apical translocation of PKC alpha decreases TER. These data suggest that epithelial transport and barrier function can be modulated by distinct PKC isoforms.
Sound measured in the external canal likely represents energy lost to the environment transmitted through the middle and external ear systems, aided by the effect of both inertial and osseotympanic bone conduction. Occluding the ear leads to sound trapping and amplification. Also, the pressure exerted against the tympanic membrane reduces middle ear compliance and increases the impedance mismatch between air and the middle ear system, reflecting sound back into the external canal. This effect is further enhanced by stapes fixation to explain our data in both groups of subjects. The final common pathway in "lateralization" is probably a product of higher than normal impedance mismatch at the oval window.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.