We present a framework for the synthesis of phase polynomials that addresses both cases of full connectivity and partial connectivity for NISQ architectures. In most cases, our algorithms generate circuits with lower CNOT count and CNOT depth than the state of the art or have a significantly smaller running time for similar performances. We also provide methods that can be applied to our algorithms in order to trade an increase in the CNOT count for a decrease in execution time, thereby filling the gap between our algorithms and faster ones.
We present a framework for the synthesis of phase polynomials that addresses both cases of full connectivity and partial connectivity for NISQ architectures. In most cases, our algorithms generate circuits with lower CNOT count and CNOT depth than the state of the art or have a significantly smaller running time for similar performances. We also provide methods that can be applied to our algorithms in order to trade an increase in the CNOT count for a decrease in execution time, thereby filling the gap between our algorithms and faster ones.
The Clifford+T gate set is commonly used to perform universal quantum computation. In such setup the T gate is typically much more expensive to implement in a fault-tolerant way than Clifford gates. To improve the feasibility of fault-tolerant quantum computing it is then crucial to minimize the number of T gates. Many algorithms, yielding effective results, have been designed to address this problem. It has been demonstrated that performing a pre-processing step consisting of reducing the number of Hadamard gates in the circuit can help to exploit the full potential of these algorithms and thereby lead to a substantial T -count reduction. Moreover, minimizing the number of Hadamard gates also restrains the number of additional qubits and operations resulting from the gadgetization of Hadamard gates, a procedure used by some compilers to further reduce the number of T gates. In this work we tackle the Hadamard gate reduction problem, and propose an algorithm for synthesizing a sequence of Pauli rotations with a minimal number of Hadamard gates. Based on this result, we present an algorithm which optimally minimizes the number of Hadamard gates lying between the first and the last T gate of the circuit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.