Nitrogen-centered radicals are major species generated by the addition of hydroxyl radicals and the one-electron oxidation of adenine derivatives. Aminyl radicals are also generated in the decomposition of adenine chloramines upon reaction of hypochlorite. Here, we report the photochemistry of modified 2'-deoxyadenosine (dAdo) containing photoactive hydrazone substituents as a model to investigate the chemistry of dAdo N(6)-aminyl radicals. Derivatives of dAdo containing a phenylhydrazone moiety at N6 displayed UV absorption between 300 and 400 nm. Upon UV photolysis in the presence of a H-donor, that is, glutathione, two major products were formed, dAdo and benzaldehyde, indicating efficient homolytic cleavage to dAdo N(6)-aminyl radicals and benzylidene iminyl radicals. dAdo N(6)-phenylhydrazone was photolyzed in the presence of a molar excess of nonmodified dAdo to mimic the reactions taking place in DNA, and the major photoproducts were identified by high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance. The formation of 2-(benzylideneamino)-2'-deoxyadenosine as well as a more extensive oxidation product may be explained by the recombination of initial dAdo N(6)-aminyl and benzylidene iminyl radicals. The formation of 2'-deoxyinosine may be explained by hydrolytic deamination of dAdo N(6)-aminyl radicals. Interestingly, a dimeric product containing two dAdo moieties was identified in the photolysis mixture. The present studies demonstrate the ability of dAdo N(6)-aminyl radicals to undergo H-abstraction to give dAdo, deamination to give 2'-deoxyinosine, and addition to the adenine moiety to give dimers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.