The focus of this research is to use a new extended beta function and develop the extensions of Gauss hypergeometric functions and confluent hypergeometric function formulas that are presumed to be new. Four theorems have also been defined under the generalized fractional integral operators that provide an image formula for the extension of new Gauss hypergeometric functions and the extension of new confluent hypergeometric functions. Moreover, discussed are analogous statements in terms of the Weyl, Riemann–Liouville, Erdélyi–Kober, and Saigo fractional integral and derivative operator types. Here, we are also able to generate more image formulas by keeping some integral transforms on the obtained formulas.
The purpose of this research is to provide a systematic review of a new type of extended beta function and hypergeometric function using a confluent hypergeometric function, as well as to examine various belongings and formulas of the new type of extended beta function, such as integral representations, derivative formulas, transformation formulas, and summation formulas. In addition, we also investigate extended Riemann–Liouville (R-L) fractional integral operator with associated properties. Furthermore, we develop new beta distribution and present graphically the relation between moment generating function and
ℓ
.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.