The crosstalk of light signaling pathways with other signaling cascades has just started to be revealed. Here, we report the identification and functional characterization of a Z-box binding factor (ZBF1) in light signaling pathways. Arabidopsis thaliana ZBF1 encodes AtMYC2/JIN1, a basic helix-loop-helix transcription factor, which has recently been shown to be involved in abscisic acid (ABA), jasmonic acid (JA), and jasmonate-ethylene signaling pathways. We demonstrate that AtMYC2 interacts with the Z- and G-box light-responsive elements of minimal light–regulated promoters. AtMYC2 is expressed in various light-grown seedlings, including in red, far red, and blue light. Genetic analyses suggest that AtMYC2 acts as a negative regulator of blue light–mediated photomorphogenic growth and blue and far-red-light–regulated gene expression; however, it functions as a positive regulator of lateral root formation. Our results further demonstrate that atmyc2 mutants have compromised sensitivity to ABA- and JA-mediated responses. Taken together, these results demonstrate that AtMYC2 is a common transcription factor of light, ABA, and JA signaling pathways in Arabidopsis.
Effective regulation of water balance in plants requires localized extracellular barriers that control water and solute movement. We describe a clade of five Arabidopsis thaliana ABCG half-transporters that are required for synthesis of an effective suberin barrier in roots and seed coats (ABCG2, ABCG6, and ABCG20) and for synthesis of an intact pollen wall (ABCG1 and ABCG16). Seed coats of abcg2 abcg6 abcg20 triple mutant plants had increased permeability to tetrazolium red and decreased suberin content. The root system of triple mutant plants was more permeable to water and salts in a zone complementary to that affected by the Casparian strip. Suberin of mutant roots and seed coats had distorted lamellar structure and reduced proportions of aliphatic components. Root wax from the mutant was deficient in alkylhydroxycinnamate esters. These mutant plants also had few lateral roots and precocious secondary growth in primary roots. abcg1 abcg16 double mutants defective in the other two members of the clade had pollen with defects in the nexine layer of the tapetum-derived exine pollen wall and in the pollen-derived intine layer. Mutant pollen collapsed at the time of anther desiccation. These mutants reveal transport requirements for barrier synthesis as well as physiological and developmental consequences of barrier deficiency.
For self-pollinating plants to reproduce, male and female organ development must be coordinated as flowers mature. The Arabidopsis transcription factors AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8 regulate this complex process by promoting petal expansion, stamen filament elongation, anther dehiscence, and gynoecium maturation, thereby ensuring that pollen released from the anthers is deposited on the stigma of a receptive gynoecium. ARF6 and ARF8 induce jasmonate production, which in turn triggers expression of MYB21 and MYB24, encoding R2R3 MYB transcription factors that promote petal and stamen growth. To understand the dynamics of this flower maturation regulatory network, we have characterized morphological, chemical, and global gene expression phenotypes of arf, myb, and jasmonate pathway mutant flowers. We found that MYB21 and MYB24 promoted not only petal and stamen development but also gynoecium growth. As well as regulating reproductive competence, both the ARF and MYB factors promoted nectary development or function and volatile sesquiterpene production, which may attract insect pollinators and/or repel pathogens. Mutants lacking jasmonate synthesis or response had decreased MYB21 expression and stamen and petal growth at the stage when flowers normally open, but had increased MYB21 expression in petals of older flowers, resulting in renewed and persistent petal expansion at later stages. Both auxin response and jasmonate synthesis promoted positive feedbacks that may ensure rapid petal and stamen growth as flowers open. MYB21 also fed back negatively on expression of jasmonate biosynthesis pathway genes to decrease flower jasmonate level, which correlated with termination of growth after flowers have opened. These dynamic feedbacks may promote timely, coordinated, and transient growth of flower organs.
Several transcriptional regulators have been identified and demonstrated to play either positive or negative regulatory roles in seedling development. However, the regulatory coordination between hypocotyl elongation and cotyledon expansion during early seedling development in plants remains unknown. We report the identification of a Z-box binding factor (ZBF2) and its functional characterization in cryptochrome-mediated blue light signaling. ZBF2 encodes a G-box binding factor (GBF1), which is a basic leucine zipper transcription factor. Our DNAprotein interaction studies reveal that ZBF2/GBF1 also interacts with the Z-box light-responsive element of light-regulated promoters. Genetic analyses of gbf1 mutants and overexpression studies suggest that GBF1 acts as a repressor of blue light-mediated inhibition in hypocotyl elongation, however, it acts as a positive regulator of cotyledon expansion during photomorphogenic growth. Furthermore, whereas GBF1 acts as a positive regulator of lateral root formation, it differentially regulates the expression of light-inducible genes. Taken together, these results demonstrate that GBF1 is a unique transcriptional regulator of photomorphogenesis in blue light.
SummaryThe Z-box is one of the light-responsive elements (LREs) found in the promoters of light inducible genes. We have studied the light responsive characteristics of Z-box containing synthetic as well as native promoters. We show that promoters with Z-box as a single LRE or paired with another LRE can respond to a broad spectrum of light. The response is primarily mediated by phyA, phyB and CRY1 photoreceptors at their respective wavelengths of light. We have demonstrated that CAB1 and Z-GATA containing promoters are down-regulated in hy5 mutants in the light. On the other hand, a promoter with Z-box alone is down-regulated in hy5 mutants both in dark and in light conditions, suggesting involvement of a similar regulatory system in the regulation of the promoter in two distinct developmental pathways: skotomorphogenesis and photomorphogenesis. Furthermore, similar to the CAB1 promoter, a Z-GATA containing promoter is derepressed in cop1 mutants in the dark. DNA±protein interaction studies reveal the presence of a DNA-binding activity that is speci®c to Z-box. These results provide insights into the regulation of the Z-box LRE mediated by various light signaling components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.