Chronic wounds are a public health problem worldwide, especially those related to diabetes. Besides being an enormous burden to patients, it challenges wound care professionals and causes a great financial cost to health system. Considering the absence of effective treatments for chronic wounds, our aim was to better understand the pathophysiology of tissue repair in diabetes in order to find alternative strategies to accelerate wound healing. Nucleotides have been described as extracellular signaling molecules in different inflammatory processes, including tissue repair. Adenosine-5’-diphosphate (ADP) plays important roles in vascular and cellular response and is immediately released after tissue injury, mainly from platelets. However, despite the well described effect on platelet aggregation during inflammation and injury, little is known about the role of ADP on the multiple steps of tissue repair, particularly in skin wounds. Therefore, we used the full-thickness excisional wound model to evaluate the effect of local ADP application in wounds of diabetic mice. ADP accelerated cutaneous wound healing, improved new tissue formation, and increased both collagen deposition and transforming growth factor-β (TGF-β) production in the wound. These effects were mediated by P2Y12 receptor activation since they were inhibited by Clopidogrel (Clop) treatment, a P2Y12 receptor antagonist. Furthermore, P2Y1 receptor antagonist also blocked ADP-induced wound closure until day 7, suggesting its involvement early in repair process. Interestingly, ADP treatment increased the expression of P2Y12 and P2Y1 receptors in the wound. In parallel, ADP reduced reactive oxygen species (ROS) formation and tumor necrosis factor-α (TNF-α) levels, while increased IL-13 levels in the skin. Also, ADP increased the counts of neutrophils, eosinophils, mast cells, and gamma delta (γδ) T cells (Vγ4+ and Vγ5+ cells subtypes of γδ+ T cells), although reduced regulatory T (Tregs) cells in the lesion. In accordance, ADP increased fibroblast proliferation and migration, myofibroblast differentiation, and keratinocyte proliferation. In conclusion, we provide strong evidence that ADP acts as a pro-resolution mediator in diabetes-associated skin wounds and is a promising intervention target for this worldwide problem.
SARS-CoV-2, the causative agent of the ongoing COVID-19, has spread worldwide since it was first identified in November 2019 in Wuhan. Since then, it was already demonstrated an exuberant inflammation, cytokine storm, endothelium dysfunction, platelets hyperactivation and aggregation, following T cell exhaustion leading to severe multi-organ damage and death of COVID-19 patients. Here, we sought to identify molecular biomarkers of disease severity in a Brazilian cohort of COVID-19 patients by measuring the serum levels of endogenous danger signals. Our data revealed that ICU patients that are critically ill, at the early hyperinflammatory phase of COVID-19 (around 12-25 days after hospital admission) display higher serum levels of the classical alarmin HMGB1. Serum levels of HMGB1 were positively correlated with cys-leukotrienes, D-dimer, AST, and ALT. Notably, we verified that HMGB1 levels above 125.4 ng/mL is the cut off that distinguishes the patients that are at higher risk of death. Serum levels of extracellular ATP, PGE<2, LTB4, cys-LTs, and tissue factor were also elevated in the serum of ICU patients. In conclusion, we propose that serum levels of HMGB1 serve as prognostic biomarker of risk of death in patients suffering from severe COVID-19.
Several studies have shown the importance of purinergic signaling in various inflammatory dis-eases. In diabetes mellitus, there is an increase in the activity of some nucleotidases suggesting that this signaling may be affected in the diabetic skin. Thus, the aim of our study was to inves-tigate the effect of ADP on wound healing in diabetic skin. Swis and C57BL/6 mice were pharmacologic induced to type 1 diabetes and submitted to a full-thickness excisional wound model to evaluate the effect of ADP as a topic treatment. Adenosine diphosphate accelerated cutaneous wound healing, improved the new tissue formation, and increased collagen deposit by positively modulating P2Y1 and P2Y12 and TGF-β production. In parallel, ADP reduced reactive oxygen species production and TNF-𝛼 levels, while increased IFNγ, IL-10 and IL-13 levels in the skin. Also, ADP induced the migration of neutrophils, eosinophils, mast cells, TCRγ4+, and TCRγ5+ cells while reduced Treg cells towards the lesion at day 7. In accordance, ADP increased the proliferation and migration of fibroblast, induced myofibroblast differentiation and keratinocyte proliferation in a P2Y12-dependent manner. We provide the first evidence of ADP acting as a potent mediator on skin wound resolution and a possible therapeutic approach for diabetic patients worldwide.
IntroductionPulmonary fibrosis is a destructive, progressive disease that dramatically reduces life quality of patients, ultimately leading to death. Therapeutic regimens for pulmonary fibrosis have shown limited benefits, hence justifying the efforts to evaluate the outcome of alternative treatments.MethodsUsing a mouse model of bleomycin (BLM)-induced lung fibrosis, in the current work we asked whether treatment with pro-resolution molecules, such as pro-resolving lipid mediators (SPMs) could ameliorate pulmonary fibrosis. To this end, we injected aspirin-triggered resolvin D1 (7S,8R,17R-trihydroxy-4Z,9E,11E,13Z,15E19Z-docosahexaenoic acid; ATRvD1; i.v.) 7 and 10 days after BLM (intratracheal) challenge and samples were two weeks later.Results and discussionAssessment of outcome in the lung tissues revealed that ATRvD1 partially restored lung architecture, reduced leukocyte infiltration, and inhibited formation of interstitial edema. In addition, lung tissues from BLM-induced mice treated with ATRvD1 displayed reduced levels of TNF-α, MCP-1, IL-1-β, and TGF-β. Of further interest, ATRvD1 decreased lung tissue expression of MMP-9, without affecting TIMP-1. Highlighting the beneficial effects of ATRvD1, we found reduced deposition of collagen and fibronectin in the lung tissues. Congruent with the anti-fibrotic effects that ATRvD1 exerted in lung tissues, α-SMA expression was decreased, suggesting that myofibroblast differentiation was inhibited by ATRvD1. Turning to culture systems, we next showed that ATRvD1 impaired TGF-β-induced fibroblast differentiation into myofibroblast. After showing that ATRvD1 hampered extracellular vesicles (EVs) release in the supernatants from TGF-β-stimulated cultures of mouse macrophages, we verified that ATRvD1 also inhibited the release of EVs in the bronco-alveolar lavage (BAL) fluid of BLM-induced mice. Motivated by studies showing that BLM-induced lung fibrosis is linked to angiogenesis, we asked whether ATRvD1 could blunt BLM-induced angiogenesis in the hamster cheek pouch model (HCP). Indeed, our intravital microscopy studies confirmed that ATRvD1 abrogates BLM-induced angiogenesis. Collectively, our findings suggest that treatment of pulmonary fibrosis patients with ATRvD1 deserves to be explored as a therapeutic option in the clinical setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.