Membrane distillation provides a feasible and optimal solution to potable water issues. The literature contains a number of studies and research studies that aim to understand the behavior of membrane distillation systems and to provide the best possible solutions under different conditions. The purpose of this article is to discuss the air gap membrane distillation (AGMD) specifically and its development to date. The areas for future research in the field of AGMD are suggested. Membranes used in AGMD were discussed, including nanocomposite membranes and graphene membranes. In addition, the long-term performance issues regarding membrane fouling and scaling and the ways to prevent and to reduce them were discussed. Performance parameters that have not been explored sufficiently, such as energy efficiency and performance ratio, are discussed. Evolution of new membrane distillation processes from AGMD, such as the material gap and permeate gap, and conductive gap membrane distillation, is discussed. A generalized theoretical model for heat and mass transfer is presented for air gap membrane distillation systems. Coupling AGMD to form a hybrid combination with renewable energy sources is considered as a good answer to energy specific issues. Hybrid renewable energy systems with AGMD are discussed in detail. Novel designs for coupling AGMD systems with different forms of renewable energies are suggested, which presents an excellent area to be considered for developing advanced hybrid AGMD systems. It is suggested that future research should include economic studies, long-run system performance, operational problems and maintainance requirements, and related issues for better understanding and better acceptance of AGMD systems for industrialization.
Membrane distillation presents one of the feasible solutions to fresh water problems. The present study aims to develop an innovative Helical Air Gap Membrane Distillation (HAGMD) system and to analyze its behavior under different operating conditions. In this design the condenser is made up of a cylindrical copper tube with continuous helical fins over it, that increases the total available condensation area by almost 45% and enhances the overall heat transfer throughout the module. The presence of fins in the gap also reduces the total air gap width by almost 64%and therefore improves the flux production. A detailed experimental analysis is carried out for a better understanding of the underlying phenomenon. The effect of feed water temperature, feed flow rate, cold flow rate, coolant temperature and feed salinity on the performance of HAGMD is investigated experimentally. The analysis shows that the finned condenser results in very high flux. The maximum flux obtained from the system was 20 kg/m2 hr with feed of 5gm/liter salinity and a diving force temperature difference of 45 °C.
Membrane distillation is a rate-governed non-isothermal membrane separation technique that utilizes trans-membrane temperature difference for evaporating water and thereby separating it from brackish feed for reproducing fresh water. A novel design of a cylindrical air gap membrane distillation module is presented. The module is fabricated in a way similar to a shell and tube heat exchanger. A PTFE hydrophobic membrane is used and is formed in a cylindrical shape. Design of experiments (DOE) is used to design the experiments statistically and to identify the significant operating parameters. Experiments were performed according to the Taguchi design approach using an L16 orthogonal array. Optimization of the whole process is performed by response surface methodology. It is shown that the feed temperature and feed flow rate have a positive effect, whereas the salinity has a negative impact on flux. The maximum value of flux achieved with this system is 3.6 kg/m2 hr. A high value of flux of 2.6 kg/m2 hr was achieved under optimum conditions at a temperature of 45 °C and a flow rate of 1.5 lpm with a salinity of 5 g/litre.
A helical air gap membrane desalination (HAGMD) system is designed in the present study. The condenser is designed as a cylindrical shape with helical fins machined on the outer surface of a hollow copper condenser. A detailed theoretical model, studying heat and mass transfer in the HAGMD module, was developed. The theoretical model for a cylindrical system with fins is developed for the first time and is unique in the MD literature. Experimentation was carried out to examine the behavior of the HAGMD module under diverse design and operating conditions. The effect of cold flow rate, feed flow rate, feed temperature, the height of fins, the number of fins, and the length of the module is determined on the performance of the HAGMD system. Permeate flux and gained output ratio (GOR) were considered as the performance indicators of the system. Results showed that permeate flux increases with cold flow rate, feed temperature, feed flow rate, as well as number of fins, while the increase in height of fins negatively affects the flux. Theoretical model and experimental results are found to be in excellent agreement with only 6.7% of error which shows that the present theoretical model is excellent to predict the performance of any HAGMD system. For similar design parameters, the average flux increased by 135% for the finned HAGMD module, with 35 fins over the one with that only for 1 fin. Maximum experimental distillate flux is found to be 20 kg/m2 hr, and GOR is found to be 0.75.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.