BackgroundPicrorhiza kurrooa Royle ex Benth. is an endangered plant species of medicinal importance. The medicinal property is attributed to monoterpenoids picroside I and II, which are modulated by temperature. The transcriptome information of this species is limited with the availability of few hundreds of expressed sequence tags (ESTs) in the public databases. In order to gain insight into temperature mediated molecular changes, high throughput de novo transcriptome sequencing and analyses were carried out at 15°C and 25°C, the temperatures known to modulate picrosides content.ResultsUsing paired-end (PE) Illumina sequencing technology, a total of 20,593,412 and 44,229,272 PE reads were obtained after quality filtering for 15°C and 25°C, respectively. Available (e.g., De-Bruijn/Eulerian graph) and in-house developed bioinformatics tools were used for assembly and annotation of transcriptome. A total of 74,336 assembled transcript sequences were obtained, with an average coverage of 76.6 and average length of 439.5. Guanine-cytosine (GC) content was observed to be 44.6%, while the transcriptome exhibited abundance of trinucleotide simple sequence repeat (SSR; 45.63%) markers.Large scale expression profiling through "read per exon kilobase per million (RPKM)", showed changes in several biological processes and metabolic pathways including cytochrome P450s (CYPs), UDP-glycosyltransferases (UGTs) and those associated with picrosides biosynthesis. RPKM data were validated by reverse transcriptase-polymerase chain reaction using a set of 19 genes, wherein 11 genes behaved in accordance with the two expression methods.ConclusionsStudy generated transcriptome of P. kurrooa at two different temperatures. Large scale expression profiling through RPKM showed major transcriptome changes in response to temperature reflecting alterations in major biological processes and metabolic pathways, and provided insight of GC content and SSR markers. Analysis also identified putative CYPs and UGTs that could help in discovering the hitherto unknown genes associated with picrosides biosynthesis.
Venturia inaequalis is the causal agent of apple scab, one of the most devastating diseases of apple. Due to several distinct features, it has emerged as a model fungal pathogen to study various aspects of hemibiotrophic plant pathogen interactions. The present study reports de novo assembling, annotation and characterization of the transcriptome of V. inaequalis. Venturia transcripts expressed during its growth on laboratory medium and that expressed during its biotrophic stage of infection on apple were sequenced using Illumina RNAseq technology. A total of 94,350,055 reads (50 bp read length) specific to Venturia were obtained after filtering. The reads were assembled into 62,061 contigs representing 24,571 unique genes. GO analysis suggested prevalence of genes associated with biological process categories like metabolism, transport and response to stimulus. Genes associated with molecular function like binding, catalytic activities and transferase activities were found in majority. EC and KEGG pathway analyses suggested prevalence of genes encoding kinases, proteases, glycoside hydrolases, cutinases, cytochrome P450 and transcription factors. The study has identified several putative pathogenicity determinants and candidate effectors in V. inaequalis. A large number of transcripts encoding membrane transporters were identified and comparative analysis revealed that the number of transporters encoded by Venturia is significantly more as compared to that encoded by several other important plant fungal pathogens. Phylogenomics analysis indicated that V. inaequalis is closely related to Pyrenophora tritici-repentis (the causal organism of tan spot of wheat). In conclusion, the findings from this study provide a better understanding of the biology of the apple scab pathogen and have identified candidate genes/functions required for its pathogenesis. This work lays the foundation for facilitating further research towards understanding this host-pathogen interaction.
Nitrate is the main source of inorganic nitrogen for plants, which also act as signaling molecule. Present study was aimed to understand nitrate regulatory mechanism in Brassica juncea cultivars, with contrasting nitrogen-use-efficiency (NUE) viz. Pusa Bold (PB, high-NUE) and Pusa Jai Kisan (PJK, low-NUE), employing RNA-seq approach. A total of 4031, 3874 and 3667 genes in PB and 2982, 2481 and 2843 genes in PJK were differentially expressed in response to early, low (0.25 mM KNO3), medium (2 mM KNO3) and high (4 mM KNO3) nitrate treatments, respectively, as compared to control (0 mM KNO3). Genes of N-uptake (NRT1.1, NRT1.8, and NRT2.1), assimilation (NR1, NR2, NiR, GS1.3, and Fd-GOGAT) and remobilization (GDH2, ASN2–3 and ALaT) were highly-upregulated in PB than in PJK in response to early nitrate treatments. We have also identified transcription factors and protein kinases that were rapidly induced in response to nitrate, suggesting their involvement in nitrate-mediated signaling. Co-expression network analysis revealed four nitrate specific modules in PB, enriched with GO terms like, “Phenylpropanoid pathway”, “Nitrogen compound metabolic process” and “Carbohydrate metabolism”. The network analysis also identified HUB transcription factors like mTERF, FHA, Orphan, bZip and FAR1, which may be the key regulators of nitrate-mediated response in B. juncea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.