Dilute-gas Bose-Einstein condensates are an exceptionally versatile testbed for the investigation of novel solitonic structures. While matter-wave solitons in one-and two-component systems have been the focus of intense research efforts, an extension to three components has never been attempted in experiments, to the best of our knowledge. Here, we experimentally demonstrate the existence of robust dark-bright-bright (DBB) and dark-dark-bright (DDB) solitons in a spinor F = 1 condensate. We observe lifetimes on the order of hundreds of milliseconds for these structures. Our theoretical analysis, based on a multiscale expansion method, shows that small-amplitude solitons of these types obey universal long-short wave resonant interaction models, namely Yajima-Oikawa systems. Our experimental and analytical findings are corroborated by direct numerical simulations highlighting the persistence of, e.g., the DBB states, as well as their robust oscillations in the trap.PACS numbers: 03.75. Mn, 03.75.Lm Solitons are localized waves propagating undistorted in nonlinear dispersive media. They play a key role in numerous physical contexts [1]. Among the various systems that support solitons, dilute-gas Bose-Einstein condensates (BECs) [2,3] provide a particularly versatile testbed for the investigation of solitonic structures [4][5][6]. In single-component BECs, solitons have been observed either as robust localized pulses (bright solitons) [7][8][9][10][11] or density dips in a background matter wave (dark solitons) [12][13][14][15][16][17][18][19][20][21], typically in BECs with attractive or repulsive interatomic interactions, respectively. Extending such studies to two-component BECs has led to rich additional dynamics. Solitons have been observed in binary mixtures of different spin states of the same atomic species, so-called pseudo-spinor BECs [22,23]. In particular, darkbright (DB) [24][25][26][27][28], and related SO(2) rotated states in the form of dark-dark solitons [29,30], have experimentally been created in binary 87 Rb BECs. Interestingly, although such BEC mixtures feature repulsive intra-and inter-component interactions, bright solitons do emerge due to an effective potential well created by the dark soliton through the intercomponent interaction [31]. Such mixed soliton states have been proposed for potential applications. Indeed, in the context of optics where these structures were pioneered [32,33], the dark soliton component was proposed to act as an adjustable waveguide for weak bright solitons [34]. In multicomponent BECs, compound solitons of the mixed type could also be used for all-matter-wave waveguiding, with the dark soliton building an effective conduit for the bright one, similar to all-optical waveguiding in optics [35]. Apart from pseudospinor BECs, such mixed soliton states have also been predicted to occur in genuinely spinorial BECs, composed of different Zeeman sub-levels of the same hyperfine state [36][37][38]. Indeed, pertinent works [39,40] have studied the existence and dynamic...
Optical nanofibres are increasingly being used in cold atom experiments due to their versatility and the clear advantages they have when developing all-fibred systems for quantum technologies. They provide researchers with a method of overcoming the Rayleigh range for achieving high intensities in a focussed beam over a relatively long distance, and can act as a noninvasive tool for probing cold atoms. In this review article, we will briefly introduce the theory of mode propagation in an ultrathin optical fibre and highlight some of the more significant theoretical and experimental progresses to date, including the early work on atom probing, manipulation and trapping, the study of atomdielectric surface interactions, and the more recent observation of nanofibremediated nonlinear optics phenomena in atomic media. The functionality of optical nanofibres in relation to the realisation of atom-photon hybrid quantum systems is also becoming more evident as some of the earlier technical challenges are surpassed and, recently, several schemes to implement optical memories have been proposed. We also discuss some possible directions where this research field may head, in particular in relation to the use of optical nanofibres that can support higher-order modes with an associated orbital angular momentum.
We report the sub-Doppler deep-cooled three-dimensional magneto-optical trap (3D MOT) of the fermionic 40K and bosonic 39K isotopes of potassium loaded by a very compact 2D+ MOT with a novel optical design feature. The set-up is meant for studies on the quantum dynamics of a few fermionic and bosonic atoms in an optical dipole trap near and well within quantum degeneracy. The loading rate and atom numbers achieved in the compact simple set-up are comparable to those in the previous set-ups with more elaborate vacuum design. We attained relatively low temperatures of 34 and 30 µK for 39K and 40K after the sub-Doppler cooling process.
Optical nanofibres are used to confine light to sub-wavelength regions and are very promising tools for the development of optical fibre-based quantum networks using cold, neutral atoms. To date, experimental studies on atoms near nanofibres have focussed on fundamental fibre mode interactions. In this work, we demonstrate the integration of a few-mode optical nanofibre into a magnetooptical trap for 87 Rb atoms. The nanofibre, with a waist diameter of ∼700 nm, supports both the fundamental and first group of higher order modes (HOMs) and is used for atomic fluorescence and absorption studies. In general, light propagating in higher order fibre modes has a greater evanescent field extension around the waist in comparison with the fundamental mode. By exploiting this behaviour, we demonstrate that the detected signal of fluorescent photons emitted from a cloud of cold atoms centred at the nanofibre waist is larger if HOMs are also included. In particular, the signal from HOMs appears to be about six times larger than that obtained for the fundamental mode. Absorption of on-resonance, HOM probe light by the laser-cooled atoms is also observed. These advances should facilitate the realization of atom trapping schemes based on HOM interference.
Multi-component Bose-Einstein condensates exhibit an intriguing variety of nonlinear structures.In recent theoretical work, the notion of magnetic solitons has been introduced. Here we generalize this concept to vector dark-antidark solitary waves in multi-component Bose-Einstein condensates.We first provide concrete experimental evidence for such states in an atomic BEC and subsequently illustrate the broader concept of these states, which are based on the interplay between miscibility and inter-component repulsion. Armed with this more general conceptual framework, we expand the notion of such states to higher dimensions presenting the possibility of both vortex-antidark states and ring-antidark-ring (dark soliton) states. We perform numerical continuation studies, investigate the existence of these states and examine their stability using the method of Bogolyubovde Gennes analysis. Dark-antidark and vortex-antidark states are found to be stable for broad parametric regimes. In the case of ring dark solitons, where the single-component ring state is known to be unstable, the vector entity appears to bear a progressively more and more stabilizing role as the inter-component coupling is increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.