Rates for the reaction of nitric oxide with several ferric heme proteins and model compounds have been measured. The NO combination rates are markedly affected by the presence or absence of distal histidine. Elephant myoglobin in which the E7 distal histidine has been replaced by glutamine reacts with NO 500-1000 times faster than do the native hemoglobins or myoglobins. By contrast, there is no difference in the CO combination rate constants of sperm whale and elephant myoglobins. Studies on ferric model compounds for the R and T states of hemoglobin indicate that their NO combination rate constants are similar to those observed for the combination of CO with the corresponding ferro derivatives. The last observation suggests that the presence of an axial water molecule at the ligand binding site of ferric hemoglobin A prevents it from exhibiting significant cooperativity in its reactions with NO.
Kinetics of NO dissociation were characterized for three five-coordinate systems, heme-NO, HSA-heme-NO (human serum albumin), GC-NO (soluble guanylate cyclase), and for the six-coordinate system, Im-heme-NO. Nitrosyl myoglobin was redetermined for comparison. Previously known, six-coordinate R and T state nitrosyl hemoglobins are also included in the comparison. The data indicate that NO dissociates more than 1000 times faster from five-coordinate model heme than it does from the six-coordinate analog. Such a negative trans-effect between NO and a proximal base is in sharp contrast to carboxy heme derivatives, in which ligand dissociation rates are greatly slowed in when a trans base is present. As a result of opposite trans-effects, six-coordinate carboxy and nitrosyl derivatives have comparable dissociation rates, even though the five-coordinate species are very different. In proteins, five- and six-coordinate forms do not show a large difference in dissociation rates. Part of the reason may be due to different probabilities for geminate recombination in the different proteins, but this cannot explain all the facts. There must also be influences of the protein structure on bond-breaking rate constants themselves. With the exception of hemoglobin in the T state, nitrosyl guanylate cyclase shows the highest NO dissociation rate constant, k(obs) = 6 x 10(-4) s(-1). This would yield a half-life of about 2 min at 37 degrees C for dissociation of NO from GC-NO, a number that has implications for the mechanism of regulation of the activity of this key heme enzyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.