The origin of missing values can be caused by different reasons and depending on these origins missing values should be considered differently and dealt with in different ways. In this research, four methods of imputation have been compared with respect to revealing their effects on the normality and variance of data, on statistical significance and on the approximation of a suitable threshold to accept missing data as truly missing. Additionally, the effects of different strategies for controlling familywise error rate or false discovery and how they work with the different strategies for missing value imputation have been evaluated. Missing values were found to affect normality and variance of data and k-means nearest neighbour imputation was the best method tested for restoring this. Bonferroni correction was the best method for maximizing true positives and minimizing false positives and it was observed that as low as 40% missing data could be truly missing. The range between 40 and 70% missing values was defined as a "gray area" and therefore a strategy has been proposed that provides a balance between the optimal imputation strategy that was k-means nearest neighbor and the best approximation of positioning real zeros.
The type and use of quality control (QC) samples is a 'hot topic' in metabolomics. QCs are not novel in analytical chemistry; however since the evolution of using QCs to control the quality of data in large scale metabolomics studies (first described in 2011), the need for detailed knowledge of how to use QCs and the effects they can have on data treatment is growing. A controlled experiment has been designed to illustrate the most advantageous uses of QCs in metabolomics experiments. For this, samples were formed from a pool of plasma whereby different metabolites were spiked into two groups in order to simulate biological biomarkers. Three different QCs were compared: QCs pooled from all samples, QCs pooled from each experimental group of samples separately and QCs provided by an external source (QC surrogate). On the experimentation of different data treatment strategies, it was revealed that QCs collected separately for groups offers the closest matrix to the samples and improves the statistical outcome, especially for biomarkers unique to one group. A novel quality assurance plus procedure has also been proposed that builds on previously published methods and has the ability to improve statistical results for QC pool. For this dataset, the best option to work with QC surrogate was to filter data based only on group presence. Finally, a novel use of recursive analysis is portrayed that allows the improvement of statistical analyses with respect to the ratio between true and false positives.
With the World Health Organization reporting over 30,000 deaths and 200,000 to 400,000 new cases annually, visceral leishmaniasis is a serious disease affecting some of the world's poorest people. As drug resistance continues to rise, there is a huge unmet need to improve treatment. Miltefosine remains one of the main treatments for leishmaniasis, yet its mode of action (MoA) is still unknown. Understanding the MoA of this drug and parasite response to treatment could help pave the way for new and more successful treatments for leishmaniasis. A novel method has been devised to study the metabolome and lipidome of Leishmania donovani axenic amastigotes treated with miltefosine. Miltefosine caused a dramatic decrease in many membrane phospholipids (PLs), in addition to amino acid pools, while sphingolipids (SLs) and sterols increased. Leishmania major promastigotes devoid of SL biosynthesis through loss of the serine palmitoyl transferase gene (ΔLCB2) were 3-fold less sensitive to miltefosine than wild-type (WT) parasites. Changes in the metabolome and lipidome of miltefosine-treated L. major mirrored those of L. donovani. A lack of SLs in the ΔLCB2 mutant was matched by substantial alterations in sterol content. Together, these data indicate that SLs and ergosterol are important for miltefosine sensitivity and, perhaps, MoA.
The role of non-targeted metabolomics with its discovery power is constantly growing in many different fields of science. However, its biggest advantage of uncovering the unexpected is turning into one of its biggest bottlenecks, particularly in metabolite identification. Among different methods for metabolite identification or ID confirmation, tandem MS analysis plays a very important role. However, this method is limited to only certain types of MS analysers, making for example TOF-MS inaccessible for this type of metabolite identification. To overcome this, in-source fragmentation has been used to fragment molecules and obtain product ions. Since the molecule of interest is not isolated prior to its fragmentation, the acquired spectrum contains many different signals arising from the fragmentation of all compounds present in the sample. Therefore, to assign product ions to their precursors, a novel use of correlation analysis was tested with r ≥0.9 as an assignation of a product ion belonging to the precursor. This method and chosen cut-off was tested on three different sample complexity levels: conducting the analysis on a single standard, mix of co-eluting standards and on a plasma sample. Obtained results clearly proved the effectiveness of the proposed methodology for metabolite ID confirmation. Moreover, the proposed strategy can be successfully applied for semi-quantification of co-eluting molecules with the same monoisotopic mass but that differ in fragmentation pattern. The proposed methodology can greatly improve the robustness and throughput of identification in metabolomics studies by use of TOF-MS, which is crucial to obtain meaningful and trustful results.
A lack of viable hits, increasing resistance, and limited knowledge on mode of action is hindering drug discovery for many diseases. To optimize prioritization and accelerate the discovery process, a strategy to cluster compounds based on more than chemical structure is required. We show the power of metabolomics in comparing effects on metabolism of 28 different candidate treatments for Leishmaniasis (25 from the GSK Leishmania box, two analogues of Leishmania box series, and amphotericin B as a gold standard treatment), tested in the axenic amastigote form of Leishmania donovani. Capillary electrophoresis-mass spectrometry was applied to identify the metabolic profile of Leishmania donovani, and principal components analysis was used to cluster compounds on potential mode of action, offering a medium throughput screening approach in drug selection/prioritization. The comprehensive and sensitive nature of the data has also made detailed effects of each compound obtainable, providing a resource to assist in further mechanistic studies and prioritization of these compounds for the development of new antileishmanial drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.