Hydrogen deuterium exchange mass spectrometry (HDX-MS) is becoming part of the standard repertoire of techniques used by molecular biologists to investigate protein structure and dynamics. This is partly due to the increased use of automation in all stages of the technique and its versatility of application—many proteins that present challenges with techniques such as X-ray crystallography and cryoelectron microscopy are amenable to investigation with HDX-MS. The present review is aimed at scientists who are curious about the technique, and how it may aid their research. It describes the fundamental basis of solvent exchange, the basics of a standard HDX-MS experiment, as well as highlighting emerging novel experimental advances, which point to where the field is heading.
Harnessing the potential beneficial effects of kinase signalling through the generation of direct kinase activators remains an underexplored area of drug development
1
–
5
. This also applies to the PI 3-kinase (PI3K) signalling pathway, which has been extensively targeted by inhibitors for conditions with PI3K overactivation, such as cancer and immune dysregulation. Here we report on the discovery of UCL-TRO-1938 (further referred to as 1938), a small molecule activator of the PI3Kα isoform, a critical effector of growth factor signalling. 1938 allosterically activates PI3Kα through a unique mechanism, by enhancing multiple steps of the PI3Kα catalytic cycle, and causes both local and global conformational changes in the PI3Kα structure. This compound is selective for PI3Kα over other PI3K isoforms and multiple protein and lipid kinases. It transiently activates PI3K signalling in all rodent and human cells tested, resulting in cellular responses such as proliferation and neurite outgrowth. In rodent models, acute treatment with 1938 provides cardioprotection from ischaemia reperfusion injury and, upon local administration, enhances nerve regeneration following nerve crush. This study identifies a unique chemical tool to directly probe PI3Kα signalling and a novel approach to modulate PI3K activity, widening the therapeutic potential of targeting these enzymes, through short-term activation for tissue protection and regeneration. Our findings illustrate the potential of activating kinases for therapeutic benefit, a currently largely untapped area of drug development.
ESX-1 is a major virulence factor of Mycobacterium tuberculosis, a secretion machinery directly involved in the survival of the microorganism from the immune system defence. It disrupts the phagosome membrane of the host cell through a contact-dependent mechanism. Recently, the structure of the inner-membrane core complex of the homologous ESX-3 and ESX-5 was resolved; however, the elements involved in the secretion through the outer membrane or those acting on the host cell membrane are unknown. Protein substrates might form this missing element. Here, we describe the oligomerisation process of the ESX-1 substrate EspB, which occurs upon cleavage of its C-terminal region and is favoured by an acidic environment. Cryo-electron microscopy data are presented which show that EspB from different mycobacterial species have a conserved quaternary structure, except for the non-pathogenic species M. smegmatis. EspB assembles into a channel with dimensions and characteristics suitable for the transit of ESX-1 substrates, as shown by the presence of another EspB trapped within. Our results provide insight into the structure and assembly of EspB, and suggests a possible function as a structural element of ESX-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.