Railway electrification offers significant benefits in terms of decarbonisation at the point of use and reduced traction costs. However to realise these benefits, the fixed infrastructure must be provided at an affordable cost. Recent schemes in the UK have seen the cost of railway electrification soar: one of a number of reasons for this has been the substantial increase in mast foundation pile lengths compared with historic practice. The paper explores this through a comparative review of traditional and modern pile design methods. In addressing the ultimate limit state, the various approaches are shown to give broadly consistent results in terms of pile length. However, increased pile lengths will be calculated if three-dimensional effects are not allowed for in limit equilibrium (ultimate limit state) calculations, or if a serviceability limit state calculation is carried out using unrealistically low soil stiffness. The results of the comparative analyses should give designers the confidence to use the traditional empirical approach, or a limit equilibrium calculation without the need for an explicit serviceability limit state check (as permitted by EC7) using potentially inappropriate soil stiffness parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.