Focal adhesion kinase (FAK) is a nonreceptor protein tyrosine kinase involved in signaling downstream of integrins, linking bacterial detection, cell entry, and initiation of proinflammatory response through MAPKs and NF-κB activation. In this study, using protein I/II from Streptococcus mutans as a model activator of FAK, we investigated the potential link between FAK and TLR pathways. Using macrophages from TLR- or MyD88-deficient mice, we report that MyD88 plays a major role in FAK-dependent protein I/II-induced cytokine release. However, response to protein I/II stimulation was independent of TLR4, TLR2, and TLR6. The data suggest that there is a cross talk between FAK and MyD88 signaling pathways. Moreover, MyD88-dependent, LPS-induced IL-6 secretion by human and murine fibroblasts required the presence of FAK, confirming that MyD88 and FAK pathways are interlinked.
Fibroblast-like synoviocytes (FLSs) play a major role in the pathogenesis of rheumatoid arthritis (RA) by secreting effector molecules that promote inflammation and joint destruction. How these cells become and remain activated is still elusive. Both genetic and environmental factors probably play a role in transforming FLSs into inflammatory matrix-degrading cells. As bacterial products have been detected in the joint and shown to trigger joint inflammation, this study was undertaken to investigate whether a bacterial ligand of integrin α5β1, protein I/ II, could contribute to the aggressive behavior of RA FLSs. Protein I/II is a pathogen-associated molecular pattern (PAMP) isolated from oral streptococci that have been identified in the joints of RA patients. The response of RA and osteoarthritis FLSs to protein I/II was analyzed using human cancer cDNA expression arrays. RT-PCR and pro-MMP-3 (pro-matrix metalloproteinase) assays were then performed to confirm the up-regulation of gene expression. Protein I/II modulated about 6% of all profiled genes. Three of these, those encoding IL-6, leukemia inhibitory factor, and MMP-3, showed a high expression level in all RA FLSs tested, whereas the expression of genes encoding other members of the cytokine or MMPfamily was not affected. Furthermore, the up-regulation of MMP-3 gene expression was followed by an increase of pro-MMP-3 release. The expression of interferon regulatory factor 1 and fibroblast growth factor-5 was also up-regulated, although the expression levels were lower. Only one gene, that for insulin-like growth factor binding protein-4, was down-regulated in all RA FLSs. In contrast, in osteoarthritis FLSs only one gene, that for IL-6, was modulated. These results suggest that a bacterial ligand of integrin α5β1 may contribute to the aggressive behavior of RA FLSs by inducing the release of pro-inflammatory cytokines and a cartilage-degrading enzyme, such as IL-6 and MMP-3, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.