The bacteria causing Legionnaires' disease, Legionella pneumophila, replicate intracellularly within unique Legionella-containing vacuoles (LCVs). LCV formation involves a type IV secretion system (T4SS) that translocates effector proteins into host cells. We show that the T4SS effector RidL localizes to LCVs, supports intracellular bacterial growth, and alters retrograde trafficking, in which selected proteins are transported from endosomes to the Golgi. The retromer complex that mediates retrograde trafficking localizes to LCVs independently of RidL and restricts intracellular bacterial growth. RidL binds the Vps29 retromer subunit and the lipid PtdIns(3)P, which localizes retromer components to membranes. Additionally, specific retromer cargo receptors and sorting nexins that mediate protein capture and membrane remodeling preferentially localize to LCVs in the absence of ridL. Ectopic RidL production inhibits retrograde trafficking, and L. pneumophila blocks retrograde transport at endosome exit sites in a ridL-dependent manner. Collectively, these findings suggest that RidL inhibits retromer function to promote intracellular bacterial replication.
Microphthalmia with linear skin lesions (MLS) is an X-linked dominant male-lethal disorder associated with mutations in holocytochrome c-type synthase (HCCS), which encodes a crucial player of the mitochondrial respiratory chain (MRC). Unlike other mitochondrial diseases, MLS is characterized by a well-recognizable neurodevelopmental phenotype. Interestingly, not all clinically diagnosed MLS cases have mutations in HCCS, thus suggesting genetic heterogeneity for this disorder. Among the possible candidates, we analyzed the X-linked COX7B and found deleterious de novo mutations in two simplex cases and a nonsense mutation, which segregates with the disease, in a familial case. COX7B encodes a poorly characterized structural subunit of cytochrome c oxidase (COX), the MRC complex IV. We demonstrated that COX7B is indispensable for COX assembly, COX activity, and mitochondrial respiration. Downregulation of the COX7B ortholog (cox7B) in medaka (Oryzias latipes) resulted in microcephaly and microphthalmia that recapitulated the MLS phenotype and demonstrated an essential function of complex IV activity in vertebrate CNS development. Our results indicate an evolutionary conserved role of the MRC complexes III and IV for the proper development of the CNS in vertebrates and uncover a group of mitochondrial diseases hallmarked by a developmental phenotype.
Microphthalmia with linear skin defects (MLS) syndrome is an X-linked male-lethal disorder also known as MIDAS (microphthalmia, dermal aplasia, and sclerocornea). Additional clinical features include neurological and cardiac abnormalities. MLS syndrome is genetically heterogeneous given that heterozygous mutations in HCCS or COX7B have been identified in MLS-affected females. Both genes encode proteins involved in the structure and function of complexes III and IV, which form the terminal segment of the mitochondrial respiratory chain (MRC). However, not all individuals with MLS syndrome carry a mutation in either HCCS or COX7B. The majority of MLS-affected females have severe skewing of X chromosome inactivation, suggesting that mutations in HCCS, COX7B, and other as-yet-unidentified X-linked gene(s) cause selective loss of cells in which the mutated X chromosome is active. By applying whole-exome sequencing and filtering for X-chromosomal variants, we identified a de novo nonsense mutation in NDUFB11 (Xp11.23) in one female individual and a heterozygous 1-bp deletion in a second individual, her asymptomatic mother, and an affected aborted fetus of the subject's mother. NDUFB11 encodes one of 30 poorly characterized supernumerary subunits of NADH:ubiquinone oxidoreductase, known as complex I (cI), the first and largest enzyme of the MRC. By shRNA-mediated NDUFB11 knockdown in HeLa cells, we demonstrate that NDUFB11 is essential for cI assembly and activity as well as cell growth and survival. These results demonstrate that X-linked genetic defects leading to the complete inactivation of complex I, III, or IV underlie MLS syndrome. Our data reveal an unexpected role of cI dysfunction in a developmental phenotype, further underscoring the existence of a group of mitochondrial diseases associated with neurocutaneous manifestations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.