Transcription factors of the basic leucine zipper (bZIP) family control important processes in all eukaryotes. In plants, bZIPs are master regulators of many central developmental and physiological processes, including morphogenesis, seed formation, abiotic and biotic stress responses. Modulation of the expression patterns of bZIP genes and changes in their activity often contribute to the activation of various signaling pathways and regulatory networks of different physiological processes. However, most advances in the study of plant bZIP transcription factors are related to their involvement in abiotic stress and development. In contrast, there are few examples of functional research with regard to biotic stress, particularly in the defense against pathogens. In this review, we summarize the recent progress revealing the role of bZIP transcription factors in the biotic stress responses of several plant species, from Arabidopsis to cotton. Moreover, we summarize the interacting partners of bZIP proteins in molecular responses during pathogen attack and the key components of the signal transduction pathways with which they physically interact during plant defense responses. Lastly, we focus on the recent advances regarding research on the functional role of bZIPs in major agricultural cultivars and examine the studies performed in this field.
Responses to biotic stress in plants lead to dramatic reprogramming of gene expression, favoring stress responses at the expense of normal cellular functions. Transcription factors are master regulators of gene expression at the transcriptional level, and controlling the activity of these factors alters the transcriptome of the plant, leading to metabolic and phenotypic changes in response to stress. The functional analysis of interactions between transcription factors and other proteins is very important for elucidating the role of these transcriptional regulators in different signaling cascades. In this review, we present an overview of protein-protein interactions for the six major families of transcription factors involved in plant defense: basic leucine zipper containing domain proteins (bZIP), amino-acid sequence WRKYGQK (WRKY), myelocytomatosis related proteins (MYC), myeloblastosis related proteins (MYB), APETALA2/ ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS (AP2/EREBP) and no apical meristem (NAM), Arabidopsis transcription activation factor (ATAF), and cup-shaped cotyledon (CUC) (NAC). We describe the interaction partners of these transcription factors as molecular responses during pathogen attack and the key components of signal transduction pathways that take place during plant defense responses. These interactions determine the activation or repression of response pathways and are crucial to understanding the regulatory networks that modulate plant defense responses.
Salinity may limit plant growth especially in arid and semiarid regions. Arbuscular mycorrhizal fungi (AMF) and the supply of inorganic phosphorus (Pi) could alleviate the negative effects of such stress by improvement in stomatal conductance, photosynthesis and biomass. The aim of this study is to evaluate the ecophysiological performance of Cenostigma pyramidale (Tul.) E. Gagnon & G. P. Lewis (Fabaceae) in a greenhouse under salinity conditions in combination with the supply of AMF and leaf Pi. The experiment was conducted in a factorial design considering two levels of salinity (+NaCl and -NaCl), two levels of AMF (+AMF and -AMF) and two levels of leaf Pi supply (+Pi and -Pi). The variables gas exchange, leaf primary metabolism, dry biomass and nutrients were measured. Plants with AMF under non-saline conditions presented a high photosynthesis and biomass. In saline conditions, AMF promoted lower decrease in photosynthesis, high shoot dry matter and low content of leaf and root Na+ and Cl-. Plants treated with leaf Pi increased biomass and photosynthetic pigments under both conditions and accumulated more Cl- in shoots under salinity conditions. When combined, AMF * Pi increased photosynthesis only in non-saline conditions. Plants under salinity conditions without AMF and Pi had higher decreases in gas exchange and high content of Cl- in roots. Therefore, C. pyramidale plants improved their metabolism under both growth conditions in the presence of AMF, Pi or a combination of both. However, the greatest increases in growth and tolerance to salinity occurred in the isolated presence of AMF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.