Fault-controlled dolomitization has been documented in Lower Carboniferous (Viséan) platform carbonates at various localities in the Pennine Basin and North Wales. The largest of these dolomite bodies (approx. 60 km2) occurs on the Derbyshire Platform, on the southern margin of the Pennine Basin. This study tests the hypothesis that dolomitization occurred at this locality during deposition, platform drowning, and the earliest stages of burial, coincident with the transition from a late syn-rift to post-rift regime. It also assesses the importance of syn-rift volcanism on dolomitization. Planar, fabric-retentive dolomite with single-phase (i.e., low temperature) fluid inclusions occurs along NW–SE and E–W oriented faults, and in platform margin facies and in proximity to the Masson Hill Volcanic Complex. Oxygen isotope data are consistent with dolomitization from seawater, but slightly depleted δ13C values reflect mixing with magmatic fluids. Volcanic activity is likely to have produced a thermal drive for fluid circulation on the platform margin, and post-depositional alteration of basalts by CO2-rich fluids could have led to alteration of olivine and release of magnesium to convecting seawater. Consequently, the large volume of dolostone on the southern margin of the Derbyshire Platform is attributed to the increased geothermal gradient and a localized increase in the Mg/Ca ratio of dolomitizing fluids at this locality, compared to elsewhere in the Pennine Basin. The results suggest that syn-rift carbonate platforms in volcanically active areas of rift basins have a greater potential for dolomitization from seawater than non-volcanic platforms in the same basin.
A sedimentological study was conducted at two localities exposing the Mississippian Eyam Limestone Formation of the Derbyshire carbonate platform, UK. Ricklow Quarry comprises seven facies with diverse skeletal assemblages, representing deposition on the inner to middle ramp within open marine waters. Once-a-Week Quarry comprises four facies, dominated by crinoidal debris representing deposition on the inner ramp. Both localities expose Gigantoproductus shell beds. Palaeoecological analysis of a single shell bed from each locality enabled investigation of the rapid colonization and success of this taxon on the platform. At Ricklow Quarry, on the eastern side of a localized mud mound, both life (>72% of thin and thick-shelled brachiopods in life position) and neighbourhood assemblages are present. A low-moderate diversity community (<1.37 and <0.8 Shannon diversity index) rapidly established over relict Brigantian mud mounds. Shell beds are preluded by intervals of decreased energy that allowed larvae to settle. Once established, the dominance of thick-shelled individuals enabled baffling, potentially providing localized shelter for larvae and nearby individuals. At Once-a-Week Quarry, where no mud mound is present, only thick-shelled Gigantoproductus species and a low diversity community (<1.07 Shannon diversity index) exclusively comprising neighbourhood assemblages (37% in life position) is present. The presence of inactive mud mounds at Ricklow Quarry appears to have been the key to the success of Gigantoproductus species enabling the onset of stable communities in the shelter provided by the relict mound. Once the first palaeocommunities were established, larvae dispersed and colonized higher energy settings, such as at Once-a-Week Quarry.
Satellite Interferometric Synthetic Aperture Radar (InSAR), geological data and Small Unmanned Aerial Vehicle (SUAV) surveying was used to enhance our understanding of ground movement at five areas of interest in Northern Ireland. In total 68 ERS-1/2 images 1992-2000 were processed with the Small Baseline Subset (SBAS) InSAR technique to derive the baseline ground instability scenario of key areas of interest for five stakeholders: TransportNI, Northern Ireland Railways, Department for the Economy, Arup, and Belfast City Council. These stakeholders require monitoring of ground deformation across either their geotechnical infrastructure (i.e., embankments, cuttings, engineered fills and earth retaining structures) or assessment of subsidence risk as a result of abandoned mine workings, using the most efficient, cost-effective methods, with a view to minimising and managing risk to their businesses. The InSAR results provided an overview of the extent and magnitude of ground deformation for a 3000 km 2 region, including the key sites of the disused salt mines in Carrickfergus, the Belfast-Bangor railway line, Throne Bend and Ligoniel Park in Belfast, Straidkilly and Garron Point along the Antrim Coast Road, plus other urbanised areas in and around Belfast. Tailored SUAV campaigns with a X8 airframe and generation of very high resolution ortho-photographs and a 3D surface model via the Structure from Motion (SfM) approach at Maiden Mount salt mine collapse in Carrickfergus in 2016 and 2017 also demonstrate the benefits of very high resolution surveying technologies to detect localised deformation and indicators of ground instability.
18Purpose Past metal mining has left a legacy of highly contaminated sediments representing a significant diffuse 19 source of contamination to water bodies in the UK and worldwide. This paper presents the results of an 20 integrated approach used to define the role of sediments in contributing to the dissolved lead (Pb) loading to 21 surface water in a mining-impacted catchment. 22Materials and methods The Rookhope Burn catchment, northern England, UK, is affected by historical mining 23 and processing of lead ore. Quantitative geochemical loading determinations, measurements of interstitial water 24 chemistry from the stream hyporheic zone, and inundation tests of bank sediments were carried out. 25Results and discussion High concentrations of Pb in the sediments from the catchment, identified from the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.