The rapidly improving precision of measurements of gravitational lensing of the Cosmic Microwave Background (CMB) also requires a corresponding increase in the precision of theoretical modeling. A commonly made approximation is to model the CMB deflection angle or lensing potential as a Gaussian random field. In this paper, however, we analytically quantify the influence of the non-Gaussianity of large-scale structure lenses, arising from nonlinear structure formation, on CMB lensing measurements. In particular, evaluating the impact of the non-zero bispectrum of largescale structure on the relevant CMB four-point correlation functions, we find that there is a bias to estimates of the CMB lensing power spectrum. For temperature-based lensing reconstruction with CMB Stage-III and Stage-IV experiments, we find that this lensing power spectrum bias is negative and is of order one percent of the signal. This corresponds to a shift of multiple standard deviations for these upcoming experiments. We caution, however, that our numerical calculation only evaluates two of the largest bias terms and thus only provides an approximate estimate of the full bias. We conclude that further investigation into lensing biases from nonlinear structure formation is required and that these biases should be accounted for in future lensing analyses.
We explore the effect of massive neutrinos on the weak lensing shear bispectrum using the Cosmological Massive Neutrino Simulations [47]. We find that the primary effect of massive neutrinos is to suppress the amplitude of the bispectrum with limited effect on the bispectrum shape. The suppression of the bispectrum amplitude is a factor of two greater than the suppression of the small scale power-spectrum. For an LSST-like weak lensing survey that observes half of the sky with five tomographic redshift bins, we explore the constraining power of the bispectrum on three cosmological parameters: the sum of the neutrino mass m ν , the matter density Ω m and the amplitude of primordial fluctuations A s . Bispectrum measurements alone provide similar constraints to the power-spectrum measurements and combining the two probes leads to significant improvements than using the latter alone. We find that the joint constraints tighten the power spectrum 95% constraints by ∼ 32% for m ν , 13% for Ω m and 57% for A s . arXiv:1810.02374v1 [astro-ph.CO] 4 Oct 2018 6 The MassiveNuS data products, including galaxy and CMB lensing convergence maps, N-body snapshots, halo catalogues, and merger trees, are publicly available at http://ColumbiaLensing.org. 7 The neutrino patch kspace-neutrinos is publicly available at https://github.com/sbird/kspace-neutrinos 8 https://pypi.python.org/pypi/lenstools/
Unprecedentedly precise cosmic microwave background (CMB) data are expected from ongoing and near-future CMB Stage-III and IV surveys, which will yield reconstructed CMB lensing maps with effective resolution approaching several arcminutes. The small-scale CMB lensing fluctuations receive non-negligible contributions from nonlinear structure in the late-time density field. These fluctuations are not fully characterized by traditional two-point statistics, such as the power spectrum. Here, we use N -body ray-tracing simulations of CMB lensing maps to examine two higher-order statistics: the lensing convergence one-point probability distribution function (PDF) and peak counts. We show that these statistics contain significant information not captured by the two-point function, and provide specific forecasts for the ongoing Stage-III Advanced Atacama Cosmology Telescope (AdvACT) experiment. Considering only the temperature-based reconstruction estimator, we forecast 9σ (PDF) and 6σ (peaks) detections of these statistics with AdvACT. Our simulation pipeline fully accounts for the non-Gaussianity of the lensing reconstruction noise, which is significant and cannot be neglected. Combining the power spectrum, PDF, and peak counts for AdvACT will tighten cosmological constraints in the Ωm-σ8 plane by ≈ 30%, compared to using the power spectrum alone.PACS numbers: 98.62.Sb, 98.70.Vc
Estimating rates of COVID-19 infection and associated mortality is challenging due to uncertainties in case ascertainment. We perform a counterfactual time series analysis on overall mortality data from towns in Italy, comparing the population mortality in 2020 with previous years, to estimate mortality from COVID-19. We find that the number of COVID-19 deaths in Italy in 2020 until September 9 was 59,000–62,000, compared to the official number of 36,000. The proportion of the population that died was 0.29% in the most affected region, Lombardia, and 0.57% in the most affected province, Bergamo. Combining reported test positive rates from Italy with estimates of infection fatality rates from the Diamond Princess cruise ship, we estimate the infection rate as 29% (95% confidence interval 15–52%) in Lombardy, and 72% (95% confidence interval 36–100%) in Bergamo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.