In yeast, the constant length of telomeric DNA results from a negative regulation of telomerase by the telomere itself. Here we follow the return to equilibrium of an abnormally shortened telomere. We observe that telomere elongation is restricted to a few base pairs per generation and that its rate decreases progressively with increasing telomere length. In contrast, in the absence of telomerase or in the presence of an overelongated telomere, the degradation rate linked to the succession of generations appears to be constant, i.e. independent of telomere length. Together, these results indicate that telomerase is gradually inhibited at its site of action by the elongating telomere. The implications of this finding for the dynamics of telomere length regulation are discussed in this study.
Telomere elongation by telomerase balances the progressive shortening of chromosome ends due to the succession of replication cycles [1] [2]. Telomerase activity is regulated in vivo at its site of action by the telomere itself. In yeast and human cells, the mean telomere length is maintained at a constant value through a cis-inhibition of telomerase by factors specifically bound to the telomeric DNA [3] [4] [5] [6] [7]. Here, we address an unexplored aspect of telomerase regulation by testing the link between telomere dynamics and cell cycle progression in the budding yeast Saccharomyces cerevisiae. We followed the elongation of an abnormally shortened telomere and observed that, like telomere shortening in the absence of telomerase, telomere elongation is linked to the succession of cell divisions. In cells progressing synchronously through the cell cycle, telomere elongation coincided with the time of telomere replication. On a minichromosome, a replication defect partially suppressed telomere elongation, suggesting a coupling between in vivo telomerase activity and conventional DNA replication.
Replication protein A (RPA) is a highly conserved single-stranded DNA-binding protein involved in DNA replication, recombination and repair. We show here that RPA is present at the telomeres of the budding yeast Saccharomyces cerevisiae, with a maximal association in S phase. A truncation of the N-terminal region of Rfa2p (associated with the rfa2Delta40 mutated allele) results in severe telomere shortening caused by a defect in the in vivo regulation of telomerase activity. Cells carrying rfa2Delta40 show impaired binding of the protein Est1p, which is required for telomerase action. In addition, normal telomere length can be restored by expressing a Cdc13-Est1p hybrid protein. These findings indicate that RPA activates telomerase by loading Est1p onto telomeres during S phase. We propose a model of in vivo telomerase action that involves synergistic action of RPA and Cdc13p at the G-rich 3' overhang of telomeric DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.