Development of the Antarctic Circumpolar Current (ACC) during the Cenozoic is controversial in terms of timing and its role in major climate transitions. Some propose that the development of the ACC was instrumental in the continental scale glaciation of Antarctica and climate cooling at the Eocene/Oligocene boundary. Here we present climate model results that show that a coherent ACC was not possible during the Oligocene due to Australasian paleogeography, despite deep water connections through the Drake Passage and Tasman Gateway and the initiation of Antarctic glaciation. The simulations of ocean currents compare well to paleoenvironmental records relating to the physical oceanography of the Oligocene and provide a framework for understanding apparently contradictory dating of the initiation of the ACC. We conclude that the northward motion of the Australasian land masses and the reconfiguration of the Tasman Seaway and Drake Passage are necessary preconditions for the formation of a strong, coherent ACC.
Debate continues about the nature of the Cretaceous–Paleogene (K–Pg) mass extinction event. An abrupt crisis triggered by a bolide impact contrasts with ideas of a more gradual extinction involving flood volcanism or climatic changes. Evidence from high latitudes has also been used to suggest that the severity of the extinction decreased from low latitudes towards the poles. Here we present a record of the K–Pg extinction based on extensive assemblages of marine macrofossils (primarily new data from benthic molluscs) from a highly expanded Cretaceous–Paleogene succession: the López de Bertodano Formation of Seymour Island, Antarctica. We show that the extinction was rapid and severe in Antarctica, with no significant biotic decline during the latest Cretaceous, contrary to previous studies. These data are consistent with a catastrophic driver for the extinction, such as bolide impact, rather than a significant contribution from Deccan Traps volcanism during the late Maastrichtian.
8The Late Cretaceous is generally considered to have been a time of greenhouse climate, 9 with no direct geological evidence for glaciation. We present, indirect evidence from the 10
The extensive Late Cretaceous – Early Paleogene sedimentary succession of Seymour Island, N.E. Antarctic Peninsula offers an unparalleled opportunity to examine the evolutionary origins of a modern polar marine fauna. Some 38 modern Southern Ocean molluscan genera (26 gastropods and 12 bivalves), representing approximately 18% of the total modern benthic molluscan fauna, can now be traced back through at least part of this sequence. As noted elsewhere in the world, the balance of the molluscan fauna changes sharply across the Cretaceous – Paleogene (K/Pg) boundary, with gastropods subsequently becoming more diverse than bivalves. A major reason for this is a significant radiation of the Neogastropoda, which today forms one of the most diverse clades in the sea. Buccinoidea is the dominant neogastropod superfamily in both the Paleocene Sobral Formation (SF) (56% of neogastropod genera) and Early - Middle Eocene La Meseta Formation (LMF) (47%), with the Conoidea (25%) being prominent for the first time in the latter. This radiation of Neogastropoda is linked to a significant pulse of global warming that reached at least 65°S, and terminates abruptly in the upper LMF in an extinction event that most likely heralds the onset of global cooling. It is also possible that the marked Early Paleogene expansion of neogastropods in Antarctica is in part due to a global increase in rates of origination following the K/Pg mass extinction event. The radiation of this and other clades at ∼65°S indicates that Antarctica was not necessarily an evolutionary refugium, or sink, in the Early – Middle Eocene. Evolutionary source – sink dynamics may have been significantly different between the Paleogene greenhouse and Neogene icehouse worlds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.