Ogura cytoplasmic male sterility (CMS) in radish (Raphanus sativus) is caused by an aberrant mitochondrial gene, Orf138, that prevents the production of functional pollen without affecting female fertility. Rfo, a nuclear gene that restores male fertility, alters the expression of Orf138 at the post-transcriptional level. The Ogura CMS/Rfo two-component system is a useful model for investigating nuclear-cytoplasmic interactions, as well as the physiological basis of fertility restoration. Using a combination of positional cloning and microsynteny analysis of Arabidopsis thaliana and radish, we genetically and physically delimited the Rfo locus to a 15-kb DNA segment. Analysis of this segment shows that Rfo is a member of the pentatricopeptide repeat (PPR) family. In Arabidopsis, this family contains more than 450 members of unknown function, although most of them are predicted to be targeted to mitochondria and chloroplasts and are thought to have roles in organellar gene expression.
In oilseed rape (Brassica napus L.) like in most oleaginous crops, seed oil content is the main qualitative determinant that confers its economic value to the harvest. Increasing seed oil content is then still an important objective in oilseed rape breeding. In the objective to get better knowledge on the genetic determinism of seed oil content, a genetic study was undertaken in two genetic backgrounds. Two populations of 445 and a 242 doubled haploids (DH) derived from the crosses "Darmor-bzh" x "Yudal" (DY) and "Rapid" x "NSL96/25" (RNSL), respectively, were genotyped and evaluated for oil content in different trials. QTL mapping in the two populations indicate that additive effects are the main factors contributing to variation in oil content. A total of 14 and 10 genomic regions were involved in seed oil content in DY and RNSL populations, respectively, of which five and two were consistently revealed across the three trials performed for each population. Most of the QTL detected were not colocalised to QTL involved in flowering time. Few epistatic QTL involved regions that carry additive QTL in one or the other population. Only one QTL located on linkage group N3 was potentially common to the two populations. The comparisons of the QTL location in this study and in the literature showed that: (i) some of the QTL were more consistently revealed across different genetic backgrounds. The QTL on N3 was revealed in all the studies and the QTL on N1, N8 and N13 were revealed in three studies out of five, (ii) some of the QTL were specific to one genetic background with potentially some original alleles, (iii) some QTL were located in homeologous regions, and (iv) some of the regions carrying QTL for oil content in oilseed rape and in Arabidopsis could be collinear. These results show the possibility to combine favourable alleles at different QTL to increase seed oil content and to use Arabidopsis genomic data to derive markers for oilseed rape QTL and identify candidate genes, as well as the interest to combine information from different segregating populations in order to build a consolidated map of QTL involved in a specific trait.
Chromosomal rearrangements can be triggered by recombination between distinct but related regions. Brassica napus (AACC; 2n ¼ 38) is a recent allopolyploid species whose progenitor genomes are widely replicated.In this article, we analyze the extent to which chromosomal rearrangements originate from homeologous recombination during meiosis of haploid B. napus (n ¼ 19) by genotyping progenies of haploid 3 euploid B. napus with molecular markers. Our study focuses on three pairs of homeologous regions selected for their differing levels of divergence (N1/N11, N3/N13, and N9/N18). We show that a high number of chromosomal rearrangements occur during meiosis of B. napus haploid and are transmitted by first division restitution (FDR)-like unreduced gametes to their progeny; half of the progeny of Darmor-bzh haploids display duplications and/or losses in the chromosomal regions being studied. We demonstrate that half of these rearrangements are due to recombination between regions of primary homeology, which represents a 10-to 100-fold increase compared to the frequency of homeologous recombination measured in euploid lines. Some of the other rearrangements certainly result from recombination between paralogous regions because we observed an average of one to two autosyndetic A-A and/or C-C bivalents at metaphase I of the B. napus haploid. These results are discussed in the context of genome evolution of B. napus.
Summary
BnaGLN1 coding sequences and expression profiles in response to nitrogen availability and ageing are essentially conserved compared with A. thaliana, suggesting that the roles of GLN1 families are conserved among the Brassiceae tribe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.