Abrasive waterjet (AWJ) possesses inherent technological and manufacturing advantages unmatched by most machine tools. Recent advancements in AWJ processes have enhanced those merits. Multidisciplinary advancements include process automation, position accuracy, cutting models, range of part dimensions, ergonomics, user and environmental friendliness, feature recognition, and others. Among the technological merits, AWJ is material independent and a cold cutting tool, capable of preserving the structural and chemical integrity of parent materials. For heat sensitive materials, AWJ often cuts over 10 times faster than thermal cutting tools such as lasers and electrode discharge machining. Unlike photochemical etching, AWJ is environmentally friendly, producing no toxic byproducts. Additionally, AWJ requires only a single tool assisted with accessories to qualify for multimode machining; it is cost effective with fast turnaround for small and large lots alike. Recent advancements together with relevant R&D, engineering, and industrial applications will be presented for precision multimode machining from macro to micro scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.