Although polyethylene (PE) and polypropylene (PP) are by far the world's largest volume plastics, only a tiny fraction of these energy-rich polyolefins are currently recycled. Depolymerization of PE to its constituent monomer, ethylene, is highly endothermic and conventionally accessible only through unselective, high-temperature pyrolysis. Here, we provide experimental demonstrations of our recently proposed tandem catalysis strategy, which uses ethylene to convert PE to propylene, the commodity monomer used to make PP. The approach combines rapid olefin metathesis with rate-limiting isomerization. Monounsaturated PE is progressively disassembled at modest temperatures via many consecutive ethenolysis events, resulting selectively in propylene. Fully saturated PE can be converted to unsaturated PE starting with a single transfer dehydrogenation to ethylene, which produces a small amount of ethane (1 equiv per dehydrogenation event). These principles are demonstrated using both homogeneous and heterogeneous catalysts. While selectivity under batch conditions is limited at high conversion by the formation of an equilibrium mixture of olefins, high selectivity to propylene (≥94%) is achieved in a semicontinuous process due to the continuous removal of propylene from the reaction mixture.
Although polyethylene (PE) and polypropylene (PP) are by far the world’s largest volume plastics, only a tiny fraction of these energy-rich polyolefins is currently recycled. Depolymerization of PE to its constituent monomer, ethylene, is highly endothermic and conventionally accessible only through unselective, high temperature pyrolysis. Here, we provide experimental demonstrations of our recently proposed tandem catalysis strategy which uses ethylene to convert PE to propylene, the commodity monomer used to make PP. The approach combines rapid olefin metathesis with rate-limiting isomerization. Mono-unsaturated PE is progressively disassembled at modest temperatures via many consecutive ethenolysis events, resulting selectively in propylene. Fully saturated PE can be converted to unsaturated PE starting with a single transfer dehydrogenation to ethylene, which produces a small amount of ethane (one equiv. per dehydrogenation event). These principles are demonstrated using both homogeneous and heterogeneous catalysts. While selectivity under batch conditions is limited at high conversion by the formation of an equilibrium mixture of olefins, high selectivity to propylene (≥ 94 %) is achieved in a semi-continuous process due to continuous removal of propylene from the reaction mixture.
Although polyethylene (PE) and polypropylene (PP) are by far the world’s largest volume plastics, only a tiny fraction of these energy-rich polyolefins is currently recycled. Depolymerization of PE to its constituent monomer, ethylene, is highly endothermic and conventionally accessible only through unselective, high temperature pyrolysis. Instead, a tandem catalysis strategy serves to convert PE to propylene, the commodity monomer used to make PP. The approach combines rapid olefin metathesis with rate-limiting isomerization. Mono-unsaturated PE is progressively disassembled at modest temperatures via many consecutive ethenolysis events, resulting ultimately in propylene. Fully saturated PE can be converted to unsaturated PE starting with a single transfer dehydrogenation to ethylene, which produces a small amount of ethane (one equiv. per dehydrogenation event). These principles are demonstrated using both homogeneous and heterogeneous catalysts. While selectivity under batch conditions is limited at high conversion by formation of an equilibrium mixture of olefins, high selectivity to propylene (greater than 90 %) is possible a semi-continuous process due to the continuous removal of propylene from the reaction mixture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.