This work is based on the evaluation of the protein binding affinity, partition coefficients (with a biomimetic membrane) and surfactant properties of three pharmaceutically active ionic liquids based on the salicylate anion. Fluorescence spectroscopy was used for the evaluation of the binding of ionic liquids to human serum albumin and for the determination of critical micelle concentrations. Partition coefficients were determined using micelles of hexadecylphosphocholine and UV-Vis derivative spectroscopy. The results indicate that all the compounds bind strongly and spontaneously to human serum albumin and exhibit the ability to form micelles. The determined partition coefficients were up to 6 times higher than those of the starting materials, evidencing that the ionic liquid form has greater affinity for the lipid phase than the inorganic salt form of salicylate. Generally, the studied salicylate ionic liquids exhibit an interesting pharmaceutical profile presenting favorable properties regarding the incorporation of the compounds in antimicrobial pharmaceutical formulations. It was evidenced that the tested ionic liquids can exert direct effects on cell membranes as indicated by their surfactant properties and high ability to partition to hydrophobic environments.
Inflammation as a result of NF-κB activation may result from the classical (canonical) pathway, with disconnection of the IκB inhibitor and subsequent nuclear translocation or, alternatively, by post-translational modifications of modulatory proteins or NF-κB subunits (non-canonical pathway). We hypothesized that hyperglycemia-induced increased glycosylation with O-linked N-acetylglucosamine (O-GlcNAc) of NF-κB in placental tissue leads to augmented production of pro-inflammatory cytokines, culminating in placental dysfunction and fetal restriction growth. Single injections of streptozotocin (40 mg/kg) or vehicle were used to induce hyperglycemia or normoglycemia, respectively, in female Wistar rats. After 3 days, rats were mated and pregnancy confirmed. Placental tissue was collected at 21 days of pregnancy. Placental expression of p65 subunit was similar between groups. However, nuclear translocation of p65 subunit, showing greater activation of NF-κB, was increased in the hyperglycemic group. Reduced expression of IκB and increased expression of phosphorylated IκB were observed in the placenta from hyperglycemic rats, demonstrating increased classical NF-κB activation. Augmented modification of O-GlcNAc-modified proteins was found in the placenta from hyperglycemic rats and p65 subunit was a key O-GlcNAc target, as demonstrated by immunoprecipitation. Tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) expressions were increased in the placenta from hyperglycemic rats. Furthermore, placental weight was increased, whereas fetal weight was decreased under hyperglycemic conditions. TNF-α and IL-6 demonstrated positive correlations with placental weight and negative correlations with fetal weight and placental efficiency. Therefore, under hyperglycemic conditions, a modulatory role of O-GlcNAc in NF-κB activity was demonstrated in the placenta, contributing to fetal and placental dysfunction due to inflammatory cytokine exacerbation.
Placental O-GlcNAc overexpression may contribute to placental dysfunction, as indicated by the placental index. Additionally, morphometric alterations, occurring simultaneously with increased O-GlcNAc accumulation in the placental tissue may contribute to placental dysfunction during hyperglycemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.