and the Cerebral Venous Sinus Thrombosis With Thrombocytopenia Syndrome Study Group IMPORTANCE Thrombosis with thrombocytopenia syndrome (TTS) has been reported after vaccination with the SARS-CoV-2 vaccines ChAdOx1 nCov-19 (Oxford-AstraZeneca) and Ad26.COV2.S (Janssen/Johnson & Johnson).OBJECTIVE To describe the clinical characteristics and outcome of patients with cerebral venous sinus thrombosis (CVST) after SARS-CoV-2 vaccination with and without TTS. DESIGN, SETTING, AND PARTICIPANTSThis cohort study used data from an international registry of consecutive patients with CVST within 28 days of SARS-CoV-2 vaccination included between March 29 and June 18, 2021, from 81 hospitals in 19 countries. For reference, data from patients with CVST between 2015 and 2018 were derived from an existing international registry. Clinical characteristics and mortality rate were described for adults with (1) CVST in the setting of SARS-CoV-2 vaccine-induced immune thrombotic thrombocytopenia, (2) CVST after SARS-CoV-2 vaccination not fulling criteria for TTS, and(3) CVST unrelated to SARS-CoV-2 vaccination.EXPOSURES Patients were classified as having TTS if they had new-onset thrombocytopenia without recent exposure to heparin, in accordance with the Brighton Collaboration interim criteria. MAIN OUTCOMES AND MEASURES Clinical characteristics and mortality rate.RESULTS Of 116 patients with postvaccination CVST, 78 (67.2%) had TTS, of whom 76 had been vaccinated with ChAdOx1 nCov-19; 38 (32.8%) had no indication of TTS. The control group included 207 patients with CVST before the COVID-19 pandemic. A total of 63 of 78 (81%), 30 of 38 (79%), and 145 of 207 (70.0%) patients, respectively, were female, and the mean (SD) age was 45 ( 14), 55 (20), and 42 (16) years, respectively. Concomitant thromboembolism occurred in 25 of 70 patients (36%) in the TTS group, 2 of 35 (6%) in the no TTS group, and 10 of 206 (4.9%) in the control group, and in-hospital mortality rates were 47% (36 of 76; 95% CI, 37-58), 5% (2 of 37; 95% CI, 1-18), and 3.9% (8 of 207; 95% CI, 2.0-7.4), respectively. The mortality rate was 61% (14 of 23) among patients in the TTS group diagnosed before the condition garnered attention in the scientific community and 42% (22 of 53) among patients diagnosed later. CONCLUSIONS AND RELEVANCEIn this cohort study of patients with CVST, a distinct clinical profile and high mortality rate was observed in patients meeting criteria for TTS after SARS-CoV-2 vaccination.
Background: Emerging data suggest that direct oral anticoagulants may be a suitable choice for anticoagulation for cerebral venous thrombosis (CVT). However, conducting high-quality trials in CVT is challenging as it is a rare disease with low rates of adverse outcomes such as major bleeding and functional dependence. To facilitate the design of future CVT trials, SECRET (Study of Rivaroxaban for Cerebral Venous Thrombosis) assessed (1) the feasibility of recruitment, (2) the safety of rivaroxaban compared with standard-of-care anticoagulation, and (3) patient-centered functional outcomes. Methods: This was a phase II, prospective, open-label blinded-end point 1:1 randomized trial conducted at 12 Canadian centers. Participants were aged ≥18 years, within 14 days of a new diagnosis of symptomatic CVT, and suitable for oral anticoagulation; they were randomized to receive rivaroxaban 20 mg daily, or standard-of-care anticoagulation (warfarin, target international normalized ratio, 2.0–3.0, or low-molecular-weight heparin) for 180 days, with optional extension up to 365 days. Primary outcomes were annual rate of recruitment (feasibility); and a composite of symptomatic intracranial hemorrhage, major extracranial hemorrhage, or mortality at 180 days (safety). Secondary outcomes included recurrent venous thromboembolism, recanalization, clinically relevant nonmajor bleeding, and functional and patient-reported outcomes (modified Rankin Scale, quality of life, headache, mood, fatigue, and cognition) at days 180 and 365. Results: Fifty-five participants were randomized. The rate of recruitment was 21.3 participants/year; 57% of eligible candidates consented. Median age was 48.0 years (interquartile range, 38.5–73.2); 66% were female. There was 1 primary event (symptomatic intracranial hemorrhage), 2 clinically relevant nonmajor bleeding events, and 1 recurrent CVT by day 180, all in the rivaroxaban group. All participants in both arms had at least partial recanalization by day 180. At enrollment, both groups on average reported reduced quality of life, low mood, fatigue, and headache with impaired cognitive performance. All metrics improved markedly by day 180. Conclusions: Recruitment targets were reached, but many eligible participants declined randomization. There were numerically more bleeding events in patients taking rivaroxaban compared with control, but rates of bleeding and recurrent venous thromboembolism were low overall and in keeping with previous studies. Participants had symptoms affecting their well-being at enrollment but improved over time. REGISTRATION: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT03178864.
Background: Cerebral venous thrombosis (CVT) due to vaccine-induced immune thrombotic thrombocytopenia (VITT) is a severe condition, with high in-hospital mortality rates. Here, we report clinical outcomes of patients with CVT-VITT after SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) vaccination who survived initial hospitalization. Methods: We used data from an international registry of patients who developed CVT within 28 days of SARS-CoV-2 vaccination, collected until February 10, 2022. VITT diagnosis was classified based on the Pavord criteria. Outcomes were mortality, functional independence (modified Rankin Scale score 0–2), VITT relapse, new thrombosis, and bleeding events (all after discharge from initial hospitalization). Results: Of 107 CVT-VITT cases, 43 (40%) died during initial hospitalization. Of the remaining 64 patients, follow-up data were available for 60 (94%) patients (37 definite VITT, 9 probable VITT, and 14 possible VITT). Median age was 40 years and 45/60 (75%) patients were women. Median follow-up time was 150 days (interquartile range, 94–194). Two patients died during follow-up (3% [95% CI, 1%–11%). Functional independence was achieved by 53/60 (88% [95% CI, 78%–94%]) patients. No new venous or arterial thrombotic events were reported. One patient developed a major bleeding during follow-up (fatal intracerebral bleed). Conclusions: In contrast to the high mortality of CVT-VITT in the acute phase, mortality among patients who survived the initial hospitalization was low, new thrombotic events did not occur, and bleeding events were rare. Approximately 9 out of 10 CVT-VITT patients who survived the acute phase were functionally independent at follow-up.
Objective Cerebral venous thrombosis (CVT) caused by vaccine‐induced immune thrombotic thrombocytopenia (VITT) is a rare adverse effect of adenovirus‐based severe acute respiratory syndrome‐coronavirus 2 (SARS‐CoV‐2) vaccines. In March 2021, after autoimmune pathogenesis of VITT was discovered, treatment recommendations were developed. These comprised immunomodulation, non‐heparin anticoagulants, and avoidance of platelet transfusion. The aim of this study was to evaluate adherence to these recommendations and its association with mortality. Methods We used data from an international prospective registry of patients with CVT after the adenovirus‐based SARS‐CoV‐2 vaccination. We analyzed possible, probable, or definite VITT‐CVT cases included until January 18, 2022. Immunomodulation entailed administration of intravenous immunoglobulins and/or plasmapheresis. Results Ninety‐nine patients with VITT‐CVT from 71 hospitals in 17 countries were analyzed. Five of 38 (13%), 11 of 24 (46%), and 28 of 37 (76%) of the patients diagnosed in March, April, and from May onward, respectively, were treated in‐line with VITT recommendations ( p < 0.001). Overall, treatment according to recommendations had no statistically significant influence on mortality (14/44 [32%] vs 29/55 [52%], adjusted odds ratio [OR] = 0.43, 95% confidence interval [CI] = 0.16–1.19). However, patients who received immunomodulation had lower mortality (19/65 [29%] vs 24/34 [70%], adjusted OR = 0.19, 95% CI = 0.06–0.58). Treatment with non‐heparin anticoagulants instead of heparins was not associated with lower mortality (17/51 [33%] vs 13/35 [37%], adjusted OR = 0.70, 95% CI = 0.24–2.04). Mortality was also not significantly influenced by platelet transfusion (17/27 [63%] vs 26/72 [36%], adjusted OR = 2.19, 95% CI = 0.74–6.54). Conclusions In patients with VITT‐CVT, adherence to VITT treatment recommendations improved over time. Immunomodulation seems crucial for reducing mortality of VITT‐CVT. ANN NEUROL 2022
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.