This study evaluated the toxicity, biodegradability and immunogenicity of newly developed whey protein-based biofilms for possible use as biomaterials for medical applications. Biofilms were prepared using (A) a whey protein isolate plasticized with either diethylene glycol (DEG) or glycerol (GLY), and (B) beta-lactoglobulin (betaLGA) plasticized with DEG. The biofilms were implanted subcutaneously into Balb/c mice. Analyses were performed at various time points. At 15, 30 and 60 days post-implantation, no necrotic zones or exudates were present at the recipient sites. The biofilms began to degrade as early as 15 days post-implantation, as evidenced by erosion and crumbling. The macroscopic observations were supported by tissue analyses revealing no tissue necrosis or degradation and confirming that the biodegradation of the biofilms began as early as 15 days post-implantation and was almost complete after 60 days. The biodegradation was accompanied by significant leukocyte infiltration at 15 days which significantly decreased at 60 days. The absence of splenomagaly in the implanted mice confirms that these biofilms were not immunogenic. Whey protein-based biofilms are biocompatible and biodegradable and may be of interest for medical applications such as scaffolds for cutaneous cell cultures and skin recovery in burn patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.