The barrel field of the somatosensory cortex constitutes a well documented example of anatomofunctional compartmentalization and activity-dependent interaction between neurons and astrocytes. In astrocytes, intercellular communication through gap junction channels composed by connexin 43 and 30 underlies a network organization. Immunohistochemical and electrophysiological experiments were undertaken to determine the coupling properties of astrocyte networks in layer IV of the developing barrel cortex. The expression of both connexins was found to be enriched within barrels compared with septa and other cortical layers. Combination of dye-coupling experiments performed with biocytin and immunostaining with specific cell markers demonstrated that astrocytic networks do not involve neurons, oligodendrocytes or NG2 cells. The shape of dye coupling was oval in the barrel cortex whereas it was circular in layer IV outside the barrel field. Two-dimensional analysis of these coupling areas indicated that gap junctional communication was restricted from a barrel to its neighbor. Such enrichment of connexin expression and transversal restriction were not observed in a transgenic mouse lacking the barrel organization, whereas they were both observed in a double-transgenic mouse with restored barrels. Direct observation of sulforhodamine B spread indicated that astrocytes located between two barrels were either weakly or not coupled, whereas coupling within a barrel was oriented toward its center. These observations indicated a preferential orientation of coupling inside the barrels resulting from subpopulations of astrocytes with different coupling properties that contribute to shaping astrocytic networks. Such properties confine intercellular communication in astrocytes within a defined barrel as previously reported for excitatory neuronal circuits.
The high level of intercellular communication mediated by gap junctions between astrocytes indicates that, besides individual astrocytic domains, a second level of organization might exist for these glial cells as they form communicating networks. Therefore,the contribution of astrocytes to brain function should also be considered to result from coordinated groups of cells. To evaluate the shape and extent of these networks we have studied the expression of connexin 43, a major gap junction protein in astrocytes, and the intercellular diffusion of gap junction tracers in two structures of the developing brain, the hippocampus and the cerebral cortex. We report that the shape of astrocytic networks depends on their location within neuronal compartments ina defined brain structure. Interestingly, not all astrocytes are coupled, which indicates that connections within these networks are restricted. As gap junctional communication in astrocytes is reported to contribute to several glial functions, differences in the shape of astrocytic networks might have consequences on neuronal activity and survival.
Although nicotine is generally considered to be the main compound responsible for addictive properties of tobacco, experimental data indicate that nicotine does not exhibit all the characteristics of other substances of abuse. We recently showed that a pretreatment with mixed irreversible monoamine oxidases inhibitors (MAOIs), such as tranylcypromine, triggers a locomotor response to nicotine in mice and allows maintenance of behavioral sensitization to nicotine in rats. Moreover, we showed by microdialysis in mice that behavioral sensitization induced by compounds belonging to main groups of drugs of abuse, such as amphetamine, cocaine, morphine, or alcohol, was underlain by sensitization of noradrenergic and serotonergic neurons. Here, this neurochemical sensitization was tested after nicotine, tranylcypromine, or a mixture of both compounds. Data indicate that, whereas neither repeated nicotine nor repeated tranylcypromine alone has any effect by itself, a repeated treatment with a mixture of nicotine and tranylcypromine induces both behavioral sensitization and sensitization of noradrenergic and serotonergic neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.