Although the general functionality and structures of acupoints have been studied, there has been little insight into their underlying morphology and physical characteristics. We describe the microanatomical structures surrounding acupoints, the electron microscopic appearance of the needles, and the physical effects of acupuncture needling on the fascia. We injected heparinized blood solution through thin needles at seven known and commonly used “sweat acupoints” in eight fresh, unembalmed, cryopreserved human cadavers to mark the needle positions, and later, during histological examination, to identify them. After the solution was injected, samples were dissected and prepared for histological examination. We examined 350 cross‐sections of five different paraffin wax sections from each acupoint microscopically. Acupuncture needles were photographed and superimposed on the cross‐sectioned tissues at similar magnifications. Needles were also examined under a scanning electron microscope to judge the roughness or smoothness of their surfaces. A greater conglomeration of nerve endings surrounded the acupoints than in tissues more than 1–3 cm distant from them. Nerve endings and blood vessels were in close contact with a complex network of membranes formed by interlacing collagen fibers, and were always enclosed within those collagen membranes. Nerve endings were found within hypodermis, muscles, or both. Scanning electron microscopy demonstrated the three‐dimensional shapes and sizes of the needles, and the degree of roughness or smoothness of their polished external surfaces. We demonstrate a delicate arrangement of nerve endings and blood vessels enclosed within complex collagen membrane networks at acupoints within the hypodermis and muscle. This arrangement could explain why needling is an essential step in the acupuncture process that provides favorable outcomes in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.