Summary Tumor-infiltrating CD8 T cells were found to frequently express the inhibitory receptor NKG2A, particularly in immune-reactive environments and after therapeutic cancer vaccination. High dimensional cluster analysis demonstrated that NKG2A marks a unique immune effector subset preferentially co-expressing the tissue-resident CD103 molecule, but not immune checkpoint inhibitors. To examine if NKG2A represented an adaptive resistance mechanism to cancer vaccination, we blocked the receptor with an antibody and knocked out its ligand Qa-1b, the conserved ortholog of HLA-E, in four mouse tumor models. The impact of therapeutic vaccines was greatly potentiated by disruption of the NKG2A/Qa-1b axis, even in a PD-1 refractory mouse model. NKG2A blockade therapy operated through CD8 T cells, but not NK cells. These findings indicate that NKG2A-blocking antibodies might improve clinical responses to therapeutic cancer vaccines.
Purpose: Human papillomavirus (HPV)-associated oropharyngeal squamous cell cancer (OPSCC) has a much better prognosis than HPV-negative OPSCC, and this is linked to dense tumor immune infiltration. As the viral antigens may trigger potent immunity, we studied the relationship between the presence of intratumoral HPV-specific T-cell responses, the immune contexture in the tumor microenvironment, and clinical outcome.Experimental Design: To this purpose, an in-depth analysis of tumor-infiltrating immune cells in a prospective cohort of 97 patients with HPV16-positive and HPV16-negative OPSCC was performed using functional T-cell assays, mass cytometry (CyTOF), flow cytometry, and fluorescent immunostaining of tumor tissues. Key findings were validated in a cohort of 75 patients with HPV16-positive OPSCC present in the publicly available The Cancer Genome Atlas database.Results: In 64% of the HPV16-positive tumors, type I HPV16-specific T cells were present. Their presence was not only strongly related to a better overall survival, a smaller tumor size, and less lymph node metastases but also to a type I-oriented tumor microenvironment, including high numbers of activated CD161 þ T cells, CD103 þ tissue-resident T cells, dendritic cells (DC), and DC-like macrophages. Conclusions:The viral antigens trigger a tumor-specific T-cell response that shapes a favorable immune contexture for the response to standard therapy. Hence, reinforcement of HPV16-specific T-cell reactivity is expected to boost this process. Clin Cancer Res; 24(3); 634-47. Ó2017 AACR.
Therapeutic vaccination with human papillomavirus type 16 synthetic long peptides (HPV16-SLPs) results in T cell-mediated regression of HPV16-induced premalignant lesions but fails to install clinically effective immunity in patients with HPV16-positive cervical cancer. We explored whether HPV16-SLP vaccination can be combined with standard carboplatin and paclitaxel chemotherapy to improve immunity and which time point would be optimal for vaccination. This was studied in the HPV16 E6/E7-positive TC-1 mouse tumor model and in patients with advanced cervical cancer. In mice and patients, the presence of a progressing tumor was associated with abnormal frequencies of circulating myeloid cells. Treatment of TC-1-bearing mice with chemotherapy and therapeutic vaccination resulted in superior survival and was directly related to a chemotherapy-mediated altered composition of the myeloid cell population in the blood and tumor. Chemotherapy had no effect on tumor-specific T cell responses. In advanced cervical cancer patients, carboplatin-paclitaxel also normalized the abnormal numbers of circulating myeloid cells, and this was associated with increased T cell reactivity to recall antigens. The effect was most pronounced starting 2 weeks after the second cycle of chemotherapy, providing an optimal immunological window for vaccination. This was validated with a single dose of HPV16-SLP vaccine given in this time window. The resulting proliferative HPV16-specific T cell responses were unusually strong and were retained after all cycles of chemotherapy. In conclusion, carboplatin-paclitaxel therapy fosters vigorous vaccine-induced T cell responses when vaccination is given after chemotherapy and has reset the tumor-induced abnormal myeloid cell composition to normal values.
The tumor immune microenvironment determines clinical outcome. Whether the original tissue in which a primary tumor develops influences this microenvironment is not well understood. We applied high-dimensional single-cell mass cytometry [Cytometry by Time-Of-Flight (CyTOF)] analysis and functional studies to analyze immune cell populations in human papillomavirus (HPV)-induced primary tumors of the cervix (cervical carcinoma) and oropharynx (oropharyngeal squamous cell carcinoma, OPSCC). Despite the same etiology of these tumors, the composition and functionality of their lymphocytic infiltrate substantially differed. Cervical carcinoma displayed a 3-fold lower CD4:CD8 ratio and contained more activated CD8CD103CD161 effector T cells and less CD4CD161 effector memory T cells than OPSCC. CD161 effector cells produced the highest cytokine levels among tumor-specific T cells. Differences in CD4 T-cell infiltration between cervical carcinoma and OPSCC were reflected in the detection rate of intratumoral HPV-specific CD4 T cells and in their impact on OPSCC and cervical carcinoma survival. The peripheral blood mononuclear cell composition of these patients, however, was similar. The tissue of origin significantly affects the overall shape of the immune infiltrate in primary tumors.
Background Vulvar squamous cell carcinoma (VSCC) has been suggested to consist of three subtypes; HPV-positive, HPV-negative mutated TP53 or HPV-negative TP53 wildtype, with different clinical courses. To analyze the immune infiltrate in these molecular subtypes and its impact on clinical outcome, an in-depth study of the tumor immune microenvironment was performed. Methods Sixty-five patients with invasive VSCC matched for age, FIGO stage and treatment modality, were grouped according to the presence of HPV and p53 protein expression status. Archived tissues were analyzed for intraepithelial and stromal expression of CD3, CD8, Foxp3, PD-1, and pan-keratin in randomly selected areas using immunofluorescence. Additional phenotyping of T cells was performed ex-vivo on VSCC ( n = 14) and blood samples by flow cytometry. Healthy vulvar samples and blood served as controls. Results Based on T-cell infiltration patterns about half of the VSCC were classified as inflamed or altered-excluded while one-third was immune-deserted. High intraepithelial helper T cell infiltration was observed in 78% of the HPV-induced VSCC, 60% of the HPVnegVSCC/p53wildtype and 40% of the HPVnegVSCC with abnormal p53 expression. A high intraepithelial infiltration with activated (CD3 + PD-1 + ), specifically helper T cells (CD3 + CD8 − Foxp3 − ), was associated with a longer recurrence-free period and overall survival, irrespective of HPV and p53 status. Flow cytometry confirmed the tumor-specific presence of activated (CD4 + PD-1 ++ CD161 − CD38 + HLA-DR + and CD8 + CD103 + CD161 − NKG2A +/− PD1 ++ CD38 ++ HLA-DR + ) effector memory T cells. Conclusion This is the first study demonstrating an association between intraepithelial T cells and clinical outcome in VSCC. Our data suggest that abnormal p53 expressing VSCCs mostly are cold tumors whereas HPV-driven VSCCs are strongly T-cell infiltrated. Electronic supplementary material The online version of this article (10.1186/s40425-019-0712-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.