The genus Yersinia includes three human pathogenic species, Yersinia pestis, the causative agent of the bubonic and pneumonic plague, and enteric pathogens Y. enterocolitica and Y. pseudotuberculosis that cause a number of gut-associated diseases. Over the past years a large repertoire of RNA-based regulatory systems has been discovered in these pathogens using different RNA-seq based approaches. Among them are several conserved or species-specific RNA-binding proteins, regulatory and sensory RNAs as well as various RNA-degrading enzymes. Many of them were shown to control the expression of important virulence-relevant factors and have a very strong impact on Yersinia virulence. The precise targets, the molecular mechanism and their role for Yersinia pathogenicity is only known for a small subset of identified genus- or species-specific RNA-based control elements. However, the ongoing development of new RNA-seq based methods and data analysis methods to investigate the synthesis, composition, translation, decay, and modification of RNAs in the bacterial cell will help us to generate a more comprehensive view of Yersinia RNA biology in the near future.
Type VI secretion systems (T6SSs) are complex macromolecular injection machines which are widespread in Gram-negative bacteria. They are involved in host-cell interactions and pathogenesis, required to eliminate competing bacteria, or are important for the adaptation to environmental stress conditions. Here we identified regulatory elements controlling the T6SS4 of Yersinia pseudotuberculosis and found a novel type of hexameric transcription factor, RovC. RovC directly interacts with the T6SS4 promoter region and activates T6SS4 transcription alone or in cooperation with the LysR-type regulator RovM. A higher complexity of regulation was achieved by the nutrient-responsive global regulator CsrA, which controls rovC expression on the transcriptional and post-transcriptional level. In summary, our work unveils a central mechanism in which RovC, a novel key activator, orchestrates the expression of the T6SS weapons together with a global regulator to deploy the system in response to the availability of nutrients in the species' native environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.