Norepinephrine (NE) can dynamically modulate excitability and functional connectivity of neural circuits in response to changes in external and internal states. Regulation by NE has been demonstrated extensively in mammalian sensory cortices, but whether NE-dependent modulation in sensory cortex alters response properties in downstream sensorimotor regions is less clear. Here we examine this question in male zebra finches, a songbird species with complex vocalizations and a well-defined neural network for auditory processing of those vocalizations. We test the hypothesis that NE modulates auditory processing and encoding, using paired extracellular electrophysiology recordings and pattern classifier analyses. We report that a NE infusion into the auditory cortical region NCM (caudomedial nidopallium; analogous to mammalian secondary auditory cortex) enhances the auditory responses, burst firing, and coding properties of single NCM neurons. Furthermore, we report that NE-dependent changes in NCM coding properties, but not auditory response strength, are transmitted downstream to the sensorimotor nucleus HVC. Finally, NE modulation in the NCM of males is qualitatively similar to that observed in females: in both sexes, NE increases auditory response strengths. However, we observed a sex difference in the mechanism of enhancement: whereas NE increases response strength in females by decreasing baseline firing rates, NE increases response strength in males by increasing auditory-evoked activity. Therefore, NE signaling exhibits a compensatory sex difference to achieve a similar, state-dependent enhancement in signal-to-noise ratio and coding accuracy in males and females. In summary, our results provide further evidence for adrenergic regulation of sensory processing and modulation of auditory/sensorimotor functional connectivity. NEW & NOTEWORTHY This study documents that the catecholamine norepinephrine (also known as noradrenaline) acts in the auditory cortex to shape local processing of complex sound stimuli. Moreover, it also enhances the coding accuracy of neurons in the auditory cortex as well as in the downstream sensorimotor cortex. Finally, this study shows that while the sensory-enhancing effects of norepinephrine are similar in males and females, there are sex differences in the mode of action.
Introduction Pulse pressure is a non-invasive measure of arterial stiffness. Elevated pulse pressure is associated with an increased risk of cardiovascular events and death. The effects of pulse pressure on outcomes after endovascular interventions for critical limb ischemia (CLI), however, are unknown. We thus evaluated whether increased pre-operative pulse pressure was associated with adverse outcomes and mortality in patients undergoing endovascular tibial artery intervention. Methods All patients undergoing endovascular tibial intervention for CLI at a single institution from 2004 to 2014 were included in this study. Pre-operative pulse pressure was derived from measurements obtained in the holding area prior to the procedure. Patients were divided into 2 groups based on pulse pressure, < 80 or ≥ 80. Patient demographics and co-morbidities were documented, and outcomes including procedural complications, repeat intervention, amputation, and mortality were recorded. Multivariable logistic regression was utilized to account for patient demographics and comorbidities. Results Of 371 patients, 186 patients had a pre-operative pulse pressure <80 and 185 had a pre-operative pulse pressure ≥80. No significant differences in patient demographics or comorbidities were identified; however there was a trend toward older age in patients with elevated pulse pressure (70 vs. 72, P = 0.07). On univariate analysis, procedural complications (21% vs. 13%, P = 0.02), reinterventions (26% vs. 17%, P < 0.01), and restenosis (32% vs. 23%, P = 0.03) were more common among patients with pulse pressure ≥ 80. Procedural complications remained significant on multivariate analysis (OR 1.8, 95% CI 1.0-3.1, P = 0.04). There was no difference in 30-day mortality; however increased mortality was seen at 5 years of follow-up (OR: 1.6, 95% CI: 1.0-2.5, P = 0.04) following multivariable analysis. Conclusions Increased pre-operative pulse pressure is associated with procedural complications and increased mortality in patients undergoing endovascular tibial intervention for CLI. It is a marker of increased risk, and may be a suitable target for interventions aimed at improving outcomes in this high risk population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.