Motivated by numerous recent reports indicating attractive properties of composite materials of carbon nanotubes (CNTs) and liquid crystals (LCs) and a lack of research aimed at optimizing such composites, the process of dispersing CNTs in thermotropic LCs is systematically studied. LC hosts can perform comparably or even better than the best known organic solvents for CNTs such as N‐methyl pyrrolidone (NMP), provided that the dispersion process and choice of LC material are optimized. The chemical structure of the molecules in the LC is very important; variations in core as well as in terminal alkyl chain influence the result. Several observations moreover indicate that the anisotropic nematic phase, aligning the nanotubes in the matrix, per se stabilizes the dispersion compared to a host that is isotropic and thus yields random tube orientation. The chemical and physical phenomena governing the preparation of the dispersion and its stability are identified, taking into account enthalpic, entropic, as well as kinetic factors. This allows a guideline on how to best design and prepare CNT–LC composites to be sketched, following which tailored development of new LCs may take the advanced functional material that CNT–LC composites comprise to the stage of commercial application.
BackgroundFeather pecking and aggressive pecking in laying hens are serious economic and welfare issues. In spite of extensive research on feather pecking during the last decades, the motivation for this behavior is still not clear. A small to moderate heritability has frequently been reported for these traits. Recently, we identified several single-nucleotide polymorphisms (SNPs) associated with feather pecking by mapping selection signatures in two divergent feather pecking lines. Here, we performed a genome-wide association analysis (GWAS) for feather pecking and aggressive pecking behavior, then combined the results with those from the recent selection signature experiment, and linked them to those obtained from a differential gene expression study.MethodsA large F2 cross of 960 F2 hens was generated using the divergent lines as founders. Hens were phenotyped for feather pecks delivered (FPD), aggressive pecks delivered (APD), and aggressive pecks received (APR). Individuals were genotyped with the Illumina 60K chicken Infinium iSelect chip. After data filtering, 29,376 SNPs remained for analyses. Single-marker GWAS was performed using a Poisson model. The results were combined with those from the selection signature experiment using Fisher’s combined probability test.ResultsNumerous significant SNPs were identified for all traits but with low false discovery rates. Nearly all significant SNPs were located in clusters that spanned a maximum of 3 Mb and included at least two significant SNPs. For FPD, four clusters were identified, which increased to 13 based on the meta-analysis (FPDmeta). Seven clusters were identified for APD and three for APR. Eight genes (of the 750 investigated genes located in the FPDmeta clusters) were significantly differentially-expressed in the brain of hens from both lines. One gene, SLC12A9, and the positional candidate gene for APD, GNG2, may be linked to the monomanine signaling pathway, which is involved in feather pecking and aggressive behavior.ConclusionsCombining the results from the GWAS with those of the selection signature experiment substantially increased the statistical power. The behavioral traits were controlled by many genes with small effects and no single SNP had effects large enough to justify its use in marker-assisted selection.Electronic supplementary materialThe online version of this article (doi:10.1186/s12711-017-0287-4) contains supplementary material, which is available to authorized users.
The objective of this research was to analyze the relationship between feather pecking (FP) and feather eating (FE) as well as general locomotor activity (GLA) using structural equation models, which allow that one trait can be treated as an explanatory variable of another trait. This provides an opportunity to infer putative causal links among the traits. For the analysis, 897 F2-hens set up from 2 lines divergently selected for high and low FP were available. The FP observations were Box-Cox transformed, and FE and GLA observations were log and square root transformed, respectively. The estimated heritabilities of FE, GLA, and FP were 0.36, 0.29, and 0.20, respectively. The genetic correlation between FP and FE (GLA) was 0.17 (0.04). A high genetic correlation of 0.47 was estimated between FE and GLA. The recursive effect from FE to FP was [Formula: see text], and from GLA to FP [Formula: see text] These results imply that an increase of FE leads to an increased FP behavior and that an increase in GLA results in a higher FP value. Furthermore, the study showed that the genetic correlation among the traits is mainly caused by indirect effects.
Feather pecking is a serious economic and welfare problem in laying hens. Feather damage occurs mainly through severe feather pecking (SFP). Selection experiments have proved that this behavior is heritable and lines have been divergently selected for high (HFP) and low feather pecking (LFP). The number of bouts of SFP per hen follows a Poisson distribution with a maximum nearby 0. A few studies indicate that the distribution within flocks is not homogenous but contains sub-groups of birds showing extremely high levels of feather pecking (EFP). It was the aim of the current study to re-analyze data on SFP of lines selected for HFP/LFP and their F2 cross so as to uncover hidden sub-populations of EFP birds. Data of seven selection generations of HFP and LFP selection lines as well as their F2 cross have been used. We fitted a two-component mixture of Poisson distributions in order to separate the sub-group of EFP from the remaining birds. HFP and LFP lines differed mainly in mean bouts per bird. The proportion of EFP was only marginal in the LFP as compared with the HFP and the F2 population. Selection for LFP did not result in total elimination of EFP. The presence of even small proportions of EFP may play an important role in initiating outbreaks of feather pecking in large flocks. Further studies on feather pecking should pay special attention to the occurrence of EFP sub-groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.