The chronic phase of HIV infection is marked by pathological activation of the immune system, the extent of which better predicts disease progression than either plasma viral load or CD4+ T cell count. Recently, translocation of microbial products from the gastrointestinal tract has been proposed as an underlying cause of this immune activation, based on indirect evidence including the detection of microbial products and specific immune responses in the plasma of chronically HIV-infected humans or SIV-infected Asian macaques. We analyzed tissues from SIV-infected rhesus macaques (RMs) to provide direct in situ evidence for translocation of microbial constituents from the lumen of the intestine into the lamina propria and to draining and peripheral lymph nodes and liver, accompanied by local immune responses in affected tissues. In chronically SIV-infected RMs this translocation is associated with breakdown of the integrity of the epithelial barrier of the gastrointestinal (GI) tract and apparent inability of lamina propria macrophages to effectively phagocytose translocated microbial constituents. By contrast, in the chronic phase of SIV infection in sooty mangabeys, we found no evidence of epithelial barrier breakdown, no increased microbial translocation and no pathological immune activation. Because immune activation is characteristic of the chronic phase of progressive HIV/SIV infections, these findings suggest that increased microbial translocation from the GI tract, in excess of capacity to clear the translocated microbial constituents, helps drive pathological immune activation. Novel therapeutic approaches to inhibit microbial translocation and/or attenuate chronic immune activation in HIV-infected individuals may complement treatments aimed at direct suppression of viral replication.
Summary Preclinical studies of HIV-1 vaccine candidates have typically shown post-infection virologic control, but protection against acquisition of infection has previously only been reported against neutralization-sensitive virus challenges1–3. Here we demonstrate vaccine protection against acquisition of fully heterologous, neutralization-resistant virus challenges in rhesus monkeys. Adenovirus/poxvirus and adenovirus/adenovirus vector-based vaccines expressing SIVsmE543 Gag, Pol, and Env antigens resulted in a ≥80% reduction in the per-exposure probability of infection4,5 against repetitive, intrarectal SIVmac251 challenges in rhesus monkeys. Protection against acquisition of infection exhibited distinct immunologic correlates as compared with post-infection virologic control and required the inclusion of Env in the vaccine regimen. These data demonstrate the first proof-of-concept that optimized HIV-1 vaccine candidates can block acquisition of stringent, heterologous, neutralization-resistant virus challenges in rhesus monkeys.
Chronic phase HIV/SIV replication is reduced by as much as 10,000-fold in elite controllers (EC) compared to typical progressors, but sufficient viral replication persists in EC tissues to allow viral sequence evolution and induce excess immune activation. Here, we show that productive SIV infection in rhesus monkey EC is strikingly restricted to follicular helper CD4+ T cells (TFH), suggesting that while the potent SIV-specific CD8+ T cells of these monkeys can effectively clear productive infection from extra-follicular sites, their relative exclusion from B cell follicles limits elimination of infected TFH. Indeed, CD8+ lymphocyte depletion of EC monkeys resulted in a dramatic re-distribution of productive SIV infection to non-TFH, with TFH restriction resuming upon CD8+ T cell recovery. Thus, B cell follicles constitute sanctuaries for persistent SIV replication in the presence of potent anti-viral CD8+ T cell responses, potentially complicating efforts to cure HIV infection with therapeutic vaccination or T cell immunotherapy.
The ancestors of the human immunodeficiency viruses (HIV-1 and HIV-2) may have evolved from a reservoir of African nonhuman primate lentiviruses, termed simian immunodeficiency viruses (SIV). None of the SIV strains characterized so far are closely related to HIV-1. HIV-2, however, is closely related to SIV (SIVmac) isolated from captive rhesus macaques (Macaca mulatta). SIV infection of feral Asian macaques has not been demonstrated by serological surveys. Thus, macaques may have acquired SIV in captivity by cross-species transmission from an SIV-infected African primate. Sooty mangabeys (Cercocebus atys), an African primate species indigenous to West Africa, however, are infected with SIV (SIVsm) both in captivity and in the wild (P. Fultz, personal communication). We have molecularly cloned and sequenced SIVsm and report here that it is closely related to SIVmac and HIV-2. These results suggest that SIVsm has infected macaques in captivity and humans in West Africa and evolved as SIVmac and HIV-2, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.