In this paper, we present a review of the intra-aortic balloon pump, as well as the usage of it in the medical field today. An intra-aortic balloon pump (IABP) is a biomedical device that can assist the heart during unstable angina or after a heart attack. This pump is typically used in patients who suffer from ischemia of the heart tissue, due to an unbalanced level of myocardial oxygen supply or demand. Through counterpulsation, which is a technique to synchronize the external pumping of blood with the heart’s cycle, the device can balance the supply and demand of blood that is necessary for the heart to pump properly. The IABP is comprised of the following four components: a polyurethane balloon, a polyethylene or fiber-optic catheter, a transducer, and the intra-aortic balloon pump console. In the past, researchers have used other materials that have low biocompatibility and can cause complications within the body. This analysis will explain the complications and state changes that occurred due to them. Limitations of past designs and advantages of current designs will be acknowledged, for they can be used by researchers to enhance designs for the future. Consequently, the analysis of this device may lead to improved designs and treatment in the future for patients with cardiac conditions.
Although most pathogens infect the human body via mucosal surfaces, very few injectable vaccines can specifically target immune cells to these tissues where their effector functions would be most desirable. We have previously shown that certain adjuvants can program vaccine-specific helper T cells to migrate to the gut, even when the vaccine is delivered non-mucosally. It is not known whether this is true for antigen-specific B cell responses. Here we show that a single intradermal vaccination with the adjuvant double mutant heat-labile toxin (dmLT) induces a robust endogenous, vaccine-specific, isotype-switched B cell response. When the vaccine was intradermally boosted, we detected non-circulating vaccine-specific B cell responses in the lamina propria of the large intestines, Peyer’s patches, and lungs. When compared to the TLR9 ligand adjuvant CpG, only dmLT was able to drive the establishment of isotype-switched resident B cells in these mucosal tissues, even when the dmLT-adjuvanted vaccine was administered non-mucosally. Further, we found that the transcription factor Batf3 was important for the full germinal center reaction, isotype switching, and Peyer’s patch migration of these B cells. Collectively, these data indicate that specific adjuvants can promote mucosal homing and the establishment of activated, antigen-specific B cells in mucosal tissues, even when these adjuvants are delivered by a non-mucosal route. These findings could fundamentally change the way future vaccines are formulated and delivered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.