Triple negative breast cancer (TNBC) is a heterogeneous disease associated with poor clinical outcome and lack of targeted therapy. Here we show that prolactin (PRL) and its signaling pathway serve as a sub-classifier and predictor of pro-differentiation therapy in TNBC. Using immunohistochemistry and various gene expression in silica analyses we observed that prolactin receptor (PRLR) protein and mRNA levels are down regulated in TNBC cases. In addition, examining correlation of PRLR gene expression with metagenes of TNBC subtypes (580 cases), we found that PRLR gene expression sub-classifies TNBC patients into a new subgroup (TNBC-PRLR) characterized by epithelial-luminal differentiation. Importantly, gene expression of PRL signaling pathway components individually (PRL, PRLR, Jak2 and Stat5a), or as a gene signature is able to predict TNBC patients with significantly better survival outcomes. As PRL hormone is a druggable target we determined the biological role of PRL in TNBC biology. Significantly, restoration/activation of PRL pathway in TNBC cells representative of mesenchymal or TNBC-PRLR subgroups led to induction of epithelial phenotype and suppression of tumorigenesis. Altogether, these results offer potential new modalities for TNBC stratification and development of personalized therapy based on PRL pathway activation.
Water-pipe smoking (WPS) is becoming the most popular form of tobacco use among the youth, especially in the Middle East, replacing cigarettes rapidly and becoming a major risk of tobacco addiction worldwide. Smoke from WPS contains similar toxins as those present in cigarette smoke and is linked directly with different types of cancers including lung and head and neck (HN) carcinomas. However, the underlying molecular pathways and/or target genes responsible for the carcinogenic process are still unknown. In this study, human normal oral epithelial (HNOE) cells, NanoString PanCancer Pathways panel of 770 gene transcripts and quantitative real-time polymerase chain reaction (qRT-PCR) analysis were applied to discover differentially expressed genes (DEG) modulated by WPS. In silico analysis was performed to analyze the impact of these genes in HN cancer patient’s biology and outcome. We found that WPS can induce the epithelial–mesenchymal transition (EMT: hallmark of cancer progression) of HNOE cells. More significantly, our analysis of NanoString revealed 23 genes deregulated under the effect of WPS, responsible for the modulation of cell cycle, proliferation, migration/invasion, apoptosis, signal transduction, and inflammatory response. Further analysis was performed using qRT-PCR of HNOE WPS-exposed and unexposed cells supported the reliability of our NanoString data. Moreover, we demonstrate those DEG to be upregulated in cancer compared with normal tissue. Using the Kaplan–Meier analysis, we observed a significant association between WPS-deregulated genes and relapse-free survival/overall survival in HN cancer patients. Our findings imply that WPS can modulate EMT as well as a set of genes that are directly involved in human HN carcinogenesis, thereby affecting HN cancer patients’ survival.
Objective To evaluate the impact of surgical wait times on outcome of patients with grade 3 endometrial cancer. Methods All consecutive patients surgically treated for grade 3 endometrial cancer between 2007 and 2015 were included. Patients were divided into two groups based on the time interval between endometrial biopsy and surgery: wait time from biopsy to surgery ≤12 weeks (84 days) vs more than 12 weeks. Survival analyses were conducted using log‐rank tests and Cox proportional hazards models. Results A total of 136 patients with grade 3 endometrial cancer were followed for a median of 5.6 years. Fifty‐one women (37.5%) waited more than 12 weeks for surgery. Prolonged surgical wait times were not associated with advanced stage at surgery, positive lymph nodes, increased lymphovascular space invasion, and tumor size (P = .8, P = 1.0, P = .2, P = .9, respectively). In multivariable analysis adjusted for clinical and pathological factors, wait times did not significantly affect disease‐specific survival (adjusted hazard ratio [HR]: 1.2, 95% confidence interval [CI], 0.6‐2.5, P = .6), overall survival (HR: 1.1, 95% CI, 0.6‐2.1, P = .7), or progression‐free survival (HR: 0.9, 95% CI, 0.5‐1.7, P = .8). Conclusion Prolonged surgical wait time for poorly differentiated endometrial cancer seemed to have a limited impact on clinical outcomes compared to biological factors.
Ovarian cancer is the most lethal gynecological malignancy. Currently, new chemotherapeutic strategies are required to improve patient outcome and survival. Biguanides, classic anti‐diabetic drugs, have gained importance for theiri antitumor potency demonstrated by various studies. Olaparib is a PARP inhibitor approved for maintenance therapy following platinum‐based chemotherapy. Furthermore, Snai1, a transcription factor that works as a master regulator of the epithelial/mesenchymal transition process (EMT) is involved in ovarian cancer resistance and progression. Here we aimed to demonstrate the possible cross talk between biguanides and Snail in response to olaparib combination therapy. In this study, we have shown that while in A2780CR cells biguanides reduced cell survival (single treatments ~20%; combined treatment ~44%) and cell migration (single treatments ~45%; biguanide‐olaparib ~80%) significantly, A2780PAR exhibited superior efficacy with single (~60%) and combined treatments (~80%). Moreover, our results indicate that knock‐down of Snail further enhances the attenuation of migration, inhibits EMT related‐proteins (~90%) and induces a synergistic effect in biguanide‐olaparib treatment. Altogether, this work suggests a novel treatment strategy against drug‐resistant or recurrent ovarian cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.