Miocene rhyolitic volcanism of eastern Oregon, USA, can be divided into two main episodes. Mantle plume upwelling is thought to have generated Columbia River Basalt Group (CRBG) lavas and coeval >16.5−15 Ma silicic volcanism trending north−south from northeast Oregon to northern Nevada. Rhyolite volcanism of the 12−0 Ma High Lava Plains province has been ascribed to either buoyancy-driven westward plume spreading or to slab rollback and mantle convection spanning from southeast Oregon to Newberry Volcano to the west. The apparent ca. 15−12 Ma eruptive hiatus suggests that rhyolites of these provinces were a product of separate processes, yet this gap was based on incomplete data. The lack of data on ∼33 of the total ∼50 rhyolitic eruptive centers in the area where the two provinces overlap (117−119°W, 43−44°N) yields only tenuous relationships between these two provinces. We acquired 40Ar/39Ar ages for 29 previously unanalyzed rhyolite centers that confirm the existence of a rhyolitic eruptive episode concurrent with CRBG flood basalt volcanism. Rhyolite eruptions gradually initiated at ca. 17.5 Ma, and our new ages indicate that peak intensity of the first eruptive episode occurred between 16.3 Ma and 14.4 Ma. We refine the ca. 15−12 Ma rhyolitic eruptive hiatus to 14.4−12.1 Ma, where strong recommencement of rhyolite eruptions began with Beatys Butte at 12.05 Ma. We find two prominent fluxes in rhyolitic eruptive activity after 12.1 Ma as opposed to one continuous, age-progressive trend, at 12.1−9.6 Ma and 7.7−5.1 Ma, which are separated by an ∼2 m.y. period of decreased rhyolite volcanism. Rhyolite eruptions were scarce after 5.1 Ma, at which point most eruptions were associated with Newberry Volcano. Periodicity of rhyolite volcanism along the High Lava Plains demands more punctuated basalt inputs than what continuous partial melting from west-spreading plume material should generate. Our new data suggest that regional rhyolite eruptions are a series of episodic events related to the arrival and storage of mafic mantle magmas. Paucity in rhyolite eruptions from 14.4 Ma to 12.1 Ma is related to decreased flux of CRBG flood basalt magmas at ca. 15 Ma. Strong recommencement of rhyolite volcanism at 12.1 Ma is related to continued Northwest Basin and Range extension and a peak rotation rate of Siletzia affecting regional lithosphere weakened by CRBG volcanism. Waning rhyolitic eruptive activity from ca. 9.6 Ma to 7.7 Ma reflects a regional transition in the primary mode of accommodation of extension from Northwest Basin and Range normal faulting to extension and shearing of the Brothers Fault Zone. Rhyolite volcanism between 7.7 Ma and 5.1 Ma was driven by continued regional extension in an area less affected by CRBG magmatism. Post-5.1 Ma rhyolite eruptions occurred within crust not influenced by CRBG magmatism but impacted by both regional extension and the Cascadia subduction zone.
Columbia River province magmatism is now known to include abundant and widespread rhyolite centers even though the view that the earliest rhyolites erupted from the McDermitt Caldera and other nearby volcanic fields along the Oregon–Nevada state border has persisted. Our study covers little-studied or unknown rhyolite occurrences in eastern Oregon that show a much wider distribution of older centers. With our new data on distribution of rhyolite centers and ages along with literature data, we consider rhyolites spanning from 17.5 to 14.5 Ma of eastern Oregon, northern Nevada, and western Idaho to be a direct response to flood basalts of the Columbia River Basalt Group (CRBG) and collectively categorize them as Columbia River rhyolites. The age distribution patterns of Columbia River rhyolites have implications for the arrival, location, and dispersion of flood basalt magmas in the crust. We consider the period from 17.5 to 16.4 Ma to be the waxing phase of rhyolite activity and the period from 15.3 to 14.5 Ma to be the waning phase. The largest number of centers was active between 16.3–15.4 Ma. The existence of crustal CRBG magma reservoirs beneath rhyolites seems inevitable, and hence, rhyolites suggest the following. The locations of centers of the waxing phase imply the arrival of CRBG magmas across the distribution area of rhyolites and are thought to correspond to the thermal pulses of arriving Picture Gorge Basalt and Picture-Gorge-Basalt-like magmas of the Imnaha Basalt in the north and to those of Steens Basalt magmas in the south. The earlier main rhyolite activity phase corresponds with Grande Ronde Basalt and evolved Picture Gorge Basalt and Steens Basalt. The later main phase rhyolite activity slightly postdated these basalts but is contemporaneous with icelanditic magmas that evolved from flood basalts. Similarly, centers of the waning phase span the area distribution of earlier phases and are similarly contemporaneous with icelanditic magmas and with other local basalts. These data have a number of implications for long-held notions about flood basalt migration through time and the age-progressive Snake River Plain Yellowstone rhyolite trend. There is no age progression in rhyolite activity from south-to-north, and this places doubt on the postulated south-to-north progression in basalt activity, at least for main-phase CRBG lavas. Furthermore, we suggest that age-progressive rhyolite activity of the Snake River Plain–Yellowstone trend starts at ~12 Ma with activity at the Bruneau Jarbidge center, and early centers along the Oregon–Nevada border, such as McDermitt, belong to the early to main phase rhyolite identified here.
The 7.1 Ma Rattlesnake Tuff (RST) of eastern Oregon is a widespread and voluminous (>300 km3) ignimbrite composed of 99% crystal poor (≤1%) high-silica rhyolite (HSR) and <1% dacites. Basaltic andesitic to basaltic inclusions within dacites are samples of underpinned mafic magmas. The RST HSR is comprised of five increasingly evolved compositional Groups (E–A), and HSR pumices range from white to dark grey, often co-mingled in spectacular banded pumices. Previously, Groups were interpreted as rhyolites generated by crystal fractionation within a single reservoir, where more evolved rhyolite melts formed from relatively less evolved rhyolite parents. To reassess compositional HSR Groups and their implications for tapping a single or multiple rhyolite reservoirs as well as reevaluating the petrological relationships among groups, we focus on large banded pumices for geochemical analysis. Statistical analysis of existing and new data verified these five compositional Groups and gaps, best characterized by variations in Ba, Eu/Eu*, Eu, FeO*, Hf, and Zr. Wet-liquidus temperatures, storage temperatures, and storage pressures calculated for all HSR Groups indicate similar pre-eruptive conditions (∼6.1–7.5 km depth; storage temperatures of ∼805–895°C). Differentiation trends, trends in storage pressure and temperature, and lack of crystal-rich tuff or country rock corroborate existing models for HSRs that involve a single, density-stratified magma reservoir prior eruption. Density differences are sufficient to prevent convection between layers of HSRs in a single reservoir when water content increases from 2–4 wt% from Groups E–A. However, if HSRs do not represent a liquid line, it is possible to generate HSRs through batch melting of various regional country rock. Yet, HSRs would still accumulate within the same storage zone, where density variations kept HSRs from mixing until eruption when these banded pumices formed. In either scenario, our study underscores the significance of water content and density variations for accumulating rhyolite magmas in a contiguous magma body without mixing. This has implications for other compositionally heterogenous rhyolitic ignimbrites where natural samples do not provide comparable evidence to argue for pre-eruptive confocal storage of different rhyolite magmas as is the case for the Rattlesnake Tuff.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.