evere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected millions of people around the world 1 . Brazil is among those countries with the highest numbers of confirmed cases of, and deaths from, SARS-CoV-2 (refs. 1,2 ), with >430,000 deaths registered and approximately 15 million cases as of May 2021 (ref. 1 ). A second infection wave was driven by the Gamma coronavirus variant 3 , which is considered to be 2.5-fold more contagious than the original strain 4 and possibly associated with a higher risk for hospitalization and intensive care unit admission in patients younger than 60 years of age 5 . This second peak in March and April 2021 resulted in more than double the reported coronavirus disease 2019 (COVID-19) cases of the first peak in 2020 (ref. 6 ). Vaccines are therefore essential in regard to reducing COVID-19 mortality and morbidity.Although phase 3 clinical trials results are still being consolidated in China,
Despite an increase in the knowledge of mechanisms and mediators involved in pulmonary fibrosis, there are no successful therapeutics available. Lipoxins (LX) and their 15-epimers, aspirin-triggered LX (ATL), are endogenously produced eicosanoids with potent anti-inflammatory and proresolution effects. To date, few studies have been performed regarding their effect on pulmonary fibrosis. In the present study, using C57BL/6 mice, we report that bleomycin (BLM)-induced lung fibrosis was prevented by the concomitant treatment with an ATL synthetic analog, ATLa, which reduced inflammation and matrix deposition. ATLa inhibited BLM-induced leukocyte accumulation and alveolar collapse as evaluated by histology and morphometrical analysis. Moreover, Sirius red staining and lung hydroxyproline content showed an increased collagen deposition in mice receiving BLM alone that was decreased upon treatment with the analog. These effects resulted in benefits to pulmonary mechanics, as ATLa brought to normal levels both lung resistance and compliance. Furthermore, the analog improved mouse survival, suggesting an important role for the LX pathway in the control of disease establishment and progression. One possible mechanism by which ATLa restrained fibrosis was suggested by the finding that BLM-induced myofibroblast accumulation/differentiation in the lung parenchyma was also reduced by both simultaneous and posttreatment with the analog (α-actin immunohistochemistry). Interestingly, ATLa posttreatment (4 days after BLM) showed similar inhibitory effects on inflammation and matrix deposition, besides the TGF-β level reduction in the lung, reinforcing an antifibrotic effect. In conclusion, our findings show that LX and ATL can be considered as promising therapeutic approaches to lung fibrotic diseases.
Background The authors hypothesized that low tidal volume (VT) would minimize ventilator-induced lung injury regardless of the degree of mechanical power. The authors investigated the impact of power, obtained by different combinations of VT and respiratory rate (RR), on ventilator-induced lung injury in experimental mild acute respiratory distress syndrome (ARDS). Methods Forty Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24 h, 32 rats were randomly assigned to be mechanically ventilated (2 h) with a combination of different VT (6 ml/kg and 11 ml/kg) and RR that resulted in low and high power. Power was calculated as energy (ΔP,L2/E,L) × RR (ΔP,L = transpulmonary driving pressure; E,L = lung elastance), and was threefold higher in high than in low power groups. Eight rats were not mechanically ventilated and used for molecular biology analysis. Results Diffuse alveolar damage score, which represents the severity of edema, atelectasis, and overdistension, was increased in high VT compared to low VT, in both low (low VT: 11 [9 to 14], high VT: 18 [15 to 20]) and high (low VT: 19 [16 to 25], high VT: 29 [27 to 30]) power groups. At high VT, interleukin-6 and amphiregulin expressions were higher in high-power than in low-power groups. At high power, amphiregulin and club cell protein 16 expressions were higher in high VT than in low VT. Mechanical energy and power correlated well with diffuse alveolar damage score and interleukin-6, amphiregulin, and club cell protein 16 expression. Conclusions In experimental mild ARDS, even at low VT, high mechanical power promoted ventilator-induced lung injury. To minimize ventilator-induced lung injury, low VT should be combined with low power.
CoronaVac has an excellent safety profile and induces moderate IgG seroconversion and neutralizing antibodies in the majority of patients with ARD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.