Grain yield is a major goal for the improvement of durum wheat, particularly in drought-prone areas. In this study, the genetic basis of grain yield (GY), heading date (HD), and plant height (PH) was investigated in a durum wheat population of 249 recombinant inbred lines evaluated in 16 environments (10 rainfed and 6 irrigated) characterized by a broad range of water availability and GY (from 5.6 to 58.8 q ha À1 ). Among the 16 quantitative trait loci (QTL) that affected GY, two major QTL on chromosomes 2BL and 3BS showed significant effects in 8 and 7 environments, with R 2 values of 21.5 and 13.8% (mean data of all 16 environments), respectively. In both cases, extensive overlap was observed between the LOD profiles of GY and PH, but not with those for HD. QTL specific for PH were identified on chromosomes 1BS, 3AL, and 7AS. Additionally, three major QTL for HD on chromosomes 2AS, 2BL, and 7BS showed limited or no effects on GY. For both PH and GY, notable epistasis between the chromosome 2BL and 3BS QTL was detected across several environments.
The ability to assess green biomass is of particular interest in a number of wheat breeding environments. However, the measurement of this and similar traits is either tedious and time-consuming or requires the use of expensive, sophisticated equipment, such as field-based spectroradiometers to measure vegetation indices (VIs). Here, conventional digital cameras are proposed as affordable and easy-touse tools for gathering field data in wheat breeding programmes. Using appropriate software, a large set of images can be automatically processed to calculate a number of VIs, based on the performance of simple colour operations on each picture. The purpose of this study was to identify a set of picture-derived vegetation indices (picVIs) and to evaluate their performance in durum wheat trials growing under rainfed and supplementary irrigation conditions. Here, zenithal pictures of each plot were obtained roughly 2 weeks after anthesis, and the picVIs that were calculated were compared with the normalised difference vegetation index (NDVI), an index derived from spectroradiometrical measurements, and with the grain yield (GY) from the same plots. The picVIs that performed best were the Hue, CIE-Lab a* and CIE-Luv u* components of the average colour of each picture, the relative green area (GA) and the 'greener area', similar to GA but excluding the more yellowish-green pixels. Our results showed a high correlation between all these picVIs and the NDVI. Moreover, in rainfed conditions, each picVI provided an estimation of GY similar to or slightly better than that provided by the NDVI. However, in irrigated conditions during anthesis, neither these picVIs nor the NDVI provided a good estimation of GY, apparently because of the saturation of the VI response in conditions of complete soil cover and high plant density.
Twelve field experiments comparing 24 durum wheat varieties from three periods-old (<1945), intermediate and modern (1988)(1989)(1990)(1991)(1992)(1993)(1994)(1995)(1996)(1997)(1998)(1999)(2000)-were carried out in order to ascertain the advances made in durum wheat yield components and related traits in Italian and Spanish germplasm. Grain yield improvements were based on linear increases in the number of grains per m 2 and harvest index, while grain weight and biomass remained unchanged. Yield per plant increased at a rate of 0.36 and 0.44% y -1 and the number of grains per m 2 improved by 39% and 55% in Italian and Spanish varieties, respectively. The mean rate of increase in the number of grains per m 2 was 0.55% y -1 . Plants per m 2 , spikes per plant and grains per spike contributed 20%, 29% and 51%, respectively, to the increase in the number of grains per m 2 . The enhance of the number of grains per m 2 was due to the greater grain set in the modern varieties, since the number of spikelets per spike remained unchanged. Harvest index increased overall by 0.48% y -1 (0.40 and 0.53% y -1 in Italian and Spanish varieties, respectively). Plant height was the trait that suffered the most dramatic changes (it decreased at a rate of -0.81% y -1 , with little difference between the varieties of the two countries), as consequence of the presence of the Rht-B1 dwarfing gene. Harvest index and plant height, which were the traits that most contributed to discriminating between periods, remained unchanged from 1980 to 2000. The higher rates of improvement in Spain are discussed in the context of the contrasting strategies followed to improve durum wheat yield in the two countries.
The massive application of chemical fertilizers to support crop production has resulted in soil, water, and air pollution at a global scale. In the same time, this situation escalated consumers' concerns regarding quality and safety of food production which, due to increase of fertilizer prices, have provoked corresponding price increase of food products. It is widely accepted that the only solution is to boost exploitation of plant-beneficial microorganisms which in conditions of undisturbed soils play a key role in increasing the availability of minerals that otherwise are inaccessible to plants. This review paper is focused on the employment of microbial inoculants and their production and formulation. Special attention is given to biotechniques that are not fully exploited as tools for biofertilizer manufacturing such as microbial co-cultivation and co-immobilization. Another emerging area includes biotechnological production and combined usage of microorganisms/active natural compounds (biostimulants) such as plant extracts and exudates, compost extracts, and products like strigolactones, which improve not only plant growth and development but also plant-microbial interactions. The most important potential and novel strategies in this field are presented as well as the tendencies that will be developed in the near future.
In the last 10-15 years, the wide application of bioformulated plant beneficial microorganisms is accepted as an effective alternative of chemical agro-products. Two main problems can be distinguished in their production and application: (a) economical competiveness based on the overall upstream and downstream operational costs, and (b) development of commercial products with a high soil-plant colonization potential in controlled conditions but not able to effectively mobilize soil nutrients and/or combat plant pathogens in the field. To solve the above problems, microbe-based formulations produced by immobilization methods are gaining attention as they demonstrate a large number of advantages compared to other solid and liquid formulations. This mini-review summarizes the knowledge of additional compounds that form part of the bioformulations. The additives can exert economical, price-decreasing effects as bulking agents or direct effects improving microbial survival during storage and after introduction into soil with simultaneous beneficial effects on soil and plants. In some studies, combinations of additives are used with a complex impact, which improves the overall characteristics of the final products. Special attention is paid to polysaccharide carriers and their derivates, which play stimulatory role on plants but are less studied. The mini-review also focuses on the potential difficulty in evaluating the effects of complex bio-formulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.