The main cause of cervical cancer is infection with Human Papilloma Virus (HPV). Loss of apoptotic control allows cancer cells to survive longer and allows time for mutation accumulation thereby increasing the ability to invade during tumor development. Treatment options for cervical cancer today are surgery, radiotherapy, and chemotherapy. Toxicity to normal cells, adverse side effects, and drug resistance are the main barriers to the use of chemotherapy. Among marine organisms such as bacteria, fungi, actinobacteria, and seaweed have been used for the treatment of cancer. Caulerpa has bioactive metabolites, namely alkaloids, terpenoids, flavonoids, steroids and tannins and its bioactivity has been reported against many diseases including cancer. This study aimed to evaluate the anticancer activity of C. racemosa on HeLa cervical cancer cells. The study used a true experimental post-test only control group design to determine the effect of C. racemosa extract on HeLa cancer cells. C. racemosa extract was given in doses of 50 μg/mL, 100 μg/mL, 200 μg/mL, and 0 μg/mL as controls. Quantitative measurement of apoptosis was measured using flowcytometry and the expression of Bcl-2, BAX, and cleaved-caspase 3 as pro and anti-apoptotic proteins was measured using immunofluorescence. Trypan blue exclusion test was performed to measure cell viability. C. racemosa extract significantly increased the expression of pro-apoptotic proteins BAX and cleaved caspase-3 compared to controls. Annexin V-PI analysis showed the induction of apoptosis in treated cells and decreased HeLa cell viability at 24 hours and 48 hours post-treatment (p-value <0.05). C. racemosa extract has potential as an anti-cancer with pro-apoptotic and anti-proliferative activity on HeLa cancer cells and can be explored further as a cervical cancer therapy.
Introduction: Cervical cancer is caused by persistent infections of human papillomavirus types 16 and 18. Also, it is classified as a malignancy since it is able to spread itself to other sites and form a metastasis. Lymph nodes metastasis is an important factor related to cervical cancer survival. The previous study reported that Caulerpa racemosa has an anti-cancer effect by inducing apoptosis by inhibiting p53 protein degradation in HeLa cancer cells. In this study, we conducted a follow-up test to determine the anticancer effect of Caulerpa racemosa as an antimetastatic agent on HeLa cancer cells.Methods: A true experimental study with a post-test-controlled group design was carried out on four groups of HeLa cell cultures by presenting different concentrations of Caulerpa racemosa extract. Moreover, to identify the antimetastatic effect, HeLa cells treated with Caulerpa racemosa extract were subjected to the woud healing scratch test and immunofluorescence staining assays. Data analysis was gained with qualitative and quantitative approaches. Quantitative methods such as One-way analysis of variance, Tukey’s multiple comparison test, and Pearson’s correlation were conducted.Result: We found that Caulerpa racemosa significantly inhibit HeLa cells wound healing migration. We also demonstrated the effect of Caulerpa racemosa in downregulating Snail and Vimentin protein expression and upregulating E-Cadherin protein expression.Conclusion:Caulerpa racemosa extract inhibits HeLa cancer cells migration by altering important regulator proteins expressions of epithelial-mesenchymal transition pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.