Histone H1, or linker histone, is an important protein that binds to the nucleosome, aiding chromatin compaction. Here, we characterize for the first time a linker histone in
T. gondii
, named TgH1-like.
The study of adipogenesis is essential for understanding and treating obesity, a multifactorial problem related to body fat accumulation that leads to several life-threatening diseases, becoming one of the most critical public health problems worldwide. In this review, we propose to provide the highlights of the adipogenesis study based on in vitro differentiation of human mesenchymal stem cells (hMSCs). We list in silico methods, such as molecular docking for identification of molecular targets, and in vitro approaches, from 2D, more straightforward and applied for screening large libraries of substances, to more representative physiological models, such as 3D and bioprinting models. We also describe the development of physiological models based on microfluidic systems applied to investigate adipogenesis in vitro. We intend to identify the main alternative models for adipogenesis evaluation, contributing to the direction of preclinical research in obesity. Future directions indicate the association of in silico and in vitro techniques to bring a clear picture of alternative methods based on adipogenesis as a tool for obesity research.
Aetiologic agents of diseases such as malaria and toxoplasmosis are found in representatives of the phylum Apicomplexa. Therefore, apicomplexan parasites are known to have a significant impact on public health. Epigenetic factors such as histone acetylation/deacetylation are among the main mechanisms of gene regulation in these parasites. Histone deacetylases (HDACs) have aroused a great deal of interest over the past 20 years for being promising targets in the development of drugs for treating several diseases such as cancer. In addition, they have also been shown to be effective for parasitic diseases. However, little is known about the structure of these proteins, as well as their interactions with specific ligands. In this paper, we modelled 14 HDACs from different apicomplexan parasites and performed molecular docking with 12 ligands analogous to the HDAC inhibitors FR235222 and apicidin, which had previously been tested against Toxoplasma gondii and Plasmodium falciparum. In this in silico study, we were able to gather relevant structural data regarding these proteins as well as insights into protein–ligand interactions for testing and developing drugs for these diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.