This study focused on the effect of the processing method on the thermal, mechanical, and biodegradation properties of polylactic acid/polyhydroxybutyrate (PLA/PHB) blends and their wood biocomposites. The blending techniques were dry‐blending or twin‐screw extrusion, both followed by compression molding. PLA/PHB blends were prepared using 15 and 25% wt. of PHB and biocomposites with 20 and 30% wt. of wood particles. Moreover, a compatibilizer was used during the extrusion process to achieve better matrix‐fiber adhesion. The results showed that the crystallinity of PLA significantly increased with PHB and wood, especially after twin‐screw extrusion. The best results in tensile, flexural, and impact strength were obtained with the extruded and compatibilized PLA/PHB blends, with values higher than the neat biopolymers. The compatibilized biocomposite with 15% wt. PHB, and 20% wt. wood particles showed higher tensile, flexural, and impact properties than PLA. The biodegradation test showed that all samples were disintegrated (above 40%) after 40 days in compost medium, observing slight decreases in the biodegradation rate when PHB or wood particles were added. Even when the lower mechanical properties were obtained with the dry‐blending technique, they are still competitive for different applications, providing the possibility to produce blends and biocomposites, avoiding the extrusion process that requires more energy consumption and longer processing times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.